搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的动态散射成像

庄佳衍 陈钱 何伟基 冒添逸

引用本文:
Citation:

基于压缩感知的动态散射成像

庄佳衍, 陈钱, 何伟基, 冒添逸

Imaging through dynamic scattering media with compressed sensing

Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi
PDF
导出引用
  • 利用基于压缩感知的成像系统可以透过静态的散射介质获得高质量的重建图像. 但是当散射介质动态变化时, 因为采样所得的测量值受到散射介质衰减系数非线性变化的影响, 重建图像质量会大大下降. 针对上述情况, 本文提出基于压缩感知成像系统的测量值线性拉伸算法, 该算法能够对所得到的非线性测量值进行分析, 根据测量值大小的不同将测量值划分成数个区域并计算补偿系数, 从而根据补偿系数进行测量值线性拉伸变换, 使测量值线性化. 最后再对变换后的测量值进行压缩感知重建计算. 通过理论分析、计算机仿真和实验证明了所提算法能够有效地应对动态的散射介质, 提高基于压缩感知成像系统在透过动态散射介质时的图像重建质量.
    Imaging through scattering media has been a focus in research because of its meaningful applications in many fields. Recently, it has been proposed that high quality images can be recovered after passing through stationary scattering media by using the single-pixel imaging system based on compressed sensing. No doubt, it is a very interesting discovery about compressed sensing. However, it is also reported that high quality image can be recovered only with stationary scattering media. Mostly, the scattering media will not remain stationary, for example, the properties of the fog will be dynamically changed when their is wind. Thus, in a dynamic case, the transmittance of the scattering media will be nonlinear over the time, which will make the measured data nonlinear and the reconstructed image quality decrease. In this paper, a novel algorithm of linear transformation for measured data (LTMD) is proposed to make the nonlinear attenuation factor gain a linear transformation after passing through the dynamic scattering media. The factor is proposed from the theoretical calculus based on compressed sensing, and this correction factor can help to eliminate the nonlinear errors caused by dynamic scattering media and make the measured data linear. So the transformed data will greatly upgrade the reconstructed image quality. Simulation results show that high peak singnal to noise ratio images can still be recovered even when the dynamic frequency reaches 300 times in the 900 times of sampling. In experiments, plastic films are used as scattering media, and the number of films can be changed during the sampling to simulate the dynamic state of scattering media. With LTMD, high quality image with a resolution of 64 48 is recovered after passing through dynamic plastic films while the recovered result without LTMD is still hard to be distinguished. The traditional reconstructed algorithms orthogonal matching pursuit, Tval3 and L1-magic are also used in the experiments, and the image is still hard to recover with any of the three traditional algorithms. In a word, the proposed LTMD algorithm uses the correction factor to make the affected nonlinear-measured data linear, so as to increase the reconstructed quality of the imaging system based on the compressed sensing even when passing through scattering media with highly dynamic frequency.
      通信作者: 陈钱, chenqian@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61101196, 61271332, 61177091)、国防预研项目 (批准号: 40405080401)和教育部重点实验室创新基金(批准号: JYB201509)资助的课题.
      Corresponding author: Chen Qian, chenqian@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61101196, 61271332, 61177091), the Weaponry Pre-research Project, China (Grant No. 40405080401), and the Innovation Fund Project of Key Laboratory of Ministry of Education, China (Grant No. JYB201509).
    [1]

    Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81

    [2]

    Hillman R T, Yamauchi T, Choi W, Dasari R R, Feld M S 2013 Sci. Rep. 3 1909

    [3]

    Chung K, Wallace J, Kim S, Kalyanasundaram S, Andalman A S, Davidson T J, Mirzabekov J J, Zalocusky K A, Mattis J, Denisin A K, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K 2013 Nature 497 332

    [4]

    Gong W L, Bo Z W, Li E R 2013 Appl. Opt. 52 15

    [5]

    Conkey D B, Caravaca-Aguirre A M 2012 Opt. Express 20 1733

    [6]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [7]

    Tsaig Y, Donoho D L 2004 Technical Report (Palo Alto: Department of Statistics, Stanford University)

    [8]

    Duarte M F, Davenport M A, Takhar D, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [9]

    Candes E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [10]

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201 (in Chinese) [李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 63 224201]

    [11]

    Wen F Q, Zhang G, Tao Y, Liu S, Feng J J 2015 Acta Phys. Sin. 64 084301 (in Chinese) [文方青, 张弓, 陶宇, 刘苏, 冯俊杰 2015 64 084301]

    [12]

    Rodrguez A D, Clemente P, Irles E, Tajahuerce E, Lancis J 2014 Opt. Lett. 39 3888

    [13]

    Dur'an V, Soldevila F, Irles E, Tajahuerce E, Lancis J 2015 Opt. Express 23 14424

    [14]

    Tajahuerce E, Dur'an V, Clemente P, Torres-Company V, Jes L 2014 Opt. Express 22 16945

    [15]

    Ying J P, Liu F, Alfano R R 2000 Appl. Opt. 39 509

    [16]

    Zimnyakov D A, Isaeva A A, Isaeva E A, Ushakova O V, Chekmasov S P, Yuvchenko S A 2012 Appl. Opt. 51 C62

    [17]

    Zhuang J Y, Chen Q, He W J, Feng W Y 2013 Opt. Eng. 52 4

    [18]

    Cands E J, Romberg J K, Tao T 2006 Commun. Pure Appl. Math. 59 1207

    [19]

    Cands E J, Romberg J K, Tao T 2006 IEEE Trans. Infom. Theory 52 489

  • [1]

    Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81

    [2]

    Hillman R T, Yamauchi T, Choi W, Dasari R R, Feld M S 2013 Sci. Rep. 3 1909

    [3]

    Chung K, Wallace J, Kim S, Kalyanasundaram S, Andalman A S, Davidson T J, Mirzabekov J J, Zalocusky K A, Mattis J, Denisin A K, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K 2013 Nature 497 332

    [4]

    Gong W L, Bo Z W, Li E R 2013 Appl. Opt. 52 15

    [5]

    Conkey D B, Caravaca-Aguirre A M 2012 Opt. Express 20 1733

    [6]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [7]

    Tsaig Y, Donoho D L 2004 Technical Report (Palo Alto: Department of Statistics, Stanford University)

    [8]

    Duarte M F, Davenport M A, Takhar D, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [9]

    Candes E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [10]

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201 (in Chinese) [李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 63 224201]

    [11]

    Wen F Q, Zhang G, Tao Y, Liu S, Feng J J 2015 Acta Phys. Sin. 64 084301 (in Chinese) [文方青, 张弓, 陶宇, 刘苏, 冯俊杰 2015 64 084301]

    [12]

    Rodrguez A D, Clemente P, Irles E, Tajahuerce E, Lancis J 2014 Opt. Lett. 39 3888

    [13]

    Dur'an V, Soldevila F, Irles E, Tajahuerce E, Lancis J 2015 Opt. Express 23 14424

    [14]

    Tajahuerce E, Dur'an V, Clemente P, Torres-Company V, Jes L 2014 Opt. Express 22 16945

    [15]

    Ying J P, Liu F, Alfano R R 2000 Appl. Opt. 39 509

    [16]

    Zimnyakov D A, Isaeva A A, Isaeva E A, Ushakova O V, Chekmasov S P, Yuvchenko S A 2012 Appl. Opt. 51 C62

    [17]

    Zhuang J Y, Chen Q, He W J, Feng W Y 2013 Opt. Eng. 52 4

    [18]

    Cands E J, Romberg J K, Tao T 2006 Commun. Pure Appl. Math. 59 1207

    [19]

    Cands E J, Romberg J K, Tao T 2006 IEEE Trans. Infom. Theory 52 489

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术.  , 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术.  , 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [3] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [4] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法.  , 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
    [5] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展.  , 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [6] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像.  , 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [7] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析.  , 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [8] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [9] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究.  , 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [10] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究.  , 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [11] 湛胜高, 梁斌明, 朱幸福, 陈家壁, 庄松林. 基于空气孔的光子晶体亚波长成像的特性研究.  , 2014, 63(15): 154212. doi: 10.7498/aps.63.154212
    [12] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射.  , 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [13] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究.  , 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [14] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [15] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [17] 童元伟, 田双, 庄松林. 等效折射率为非-1时的亚波长成像.  , 2011, 60(5): 054201. doi: 10.7498/aps.60.054201
    [18] 李永宏, 刘福生, 马海云, 程小理, 马小娟, 孙燕云, 张明建, 薛学东. 动态荷载下石英玻璃的透光性及损伤演化研究.  , 2010, 59(3): 2104-2108. doi: 10.7498/aps.59.2104
    [19] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射.  , 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [20] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响.  , 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
计量
  • 文章访问数:  9737
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-15
  • 修回日期:  2015-11-25
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map