搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单液滴正碰球面动态行为特性实验研究

唐鹏博 王关晴 王路 石中玉 李源 徐江荣

引用本文:
Citation:

单液滴正碰球面动态行为特性实验研究

唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣

Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere

Tang Peng-Bo, Wang Guan-Qing, Wang Lu, Shi Zhong-Yu, Li Yuan, Xu Jiang-Rong
PDF
HTML
导出引用
  • 在考虑空气阻力影响, 确定液滴撞击球面速度的基础上, 对较高韦伯数液滴撞击干燥球面动态行为过程进行了实验研究, 分析了球面曲率与韦伯数对液滴撞击行为和铺展因子的影响, 并与前人撞击平面结果进行了对比. 实验表明, 靠近撞击球面时, 液滴降落速度出现明显波动; 球面曲率对液滴撞击后行为影响明显, 曲率较大时, 液滴撞击后铺展液膜会超出球面直径并滑落, 曲率较小时, 液滴撞击后在球面上呈现明显的铺展、回缩、震荡、着附动态变化行为, 此时最大铺展因子受曲率影响小, 随曲率减小, 逐渐趋向于撞击平面时的最大铺展因子; 韦伯数对液膜铺展速率影响较小, 但对液膜回缩时间影响明显, 最大铺展因子随韦伯数增加逐渐增大, 获得的关联式呈指数变化.
    The phenomenon that droplets impacting on the solid surface is ubiquitous in industrial applications such as spray cooling, spray painting, ink-jet printing, and fuel-air mixing internal combustion engines. The dynamic of droplet impacting on solid surface has been a hot topic in the area of fluid mechanics. Most of the existing experimental studies focused on the droplet impacting on flat or cylinder surface whereas the droplet impacting on a dry sphere surface, especially its effect from the sphere curvature, has been less investigated. Therefore, the dynamic behavior of a droplet impacting normally on a dry sphere is experimentally investigated at the relatively high Reynolds and Weber number in the present work. The impacting velocity of the droplet on the sphere is discussed with consideration of air resistance effect. The influences of spherical curvature and Weber number on the dynamic behavior and spreading factor are analyzed. The experimental results are compared with those of previous impacting flat researches. The results show that the drop velocity fluctuates significantly near the impacting sphere. The influence of the spherical curvature on the dynamic behavior of the droplet impact is obvious. The maximum spreading diameter of the liquid film will exceed that of the sphere with a curvature greater than 0.2 mm–1, and some segments of the liquid film rim even slide down directly. When the spherical curvature is less than 0.167 mm–1, the dynamic behaviors of the impacting droplet will undergo the spread, retraction, oscillation, and stable attachment after impacting. Then the maximum spreading factor of the droplet impacting sphere is little influenced by the curvature, and gradually tends to that of the droplet impacting plane with curvature decreasing. The Weber number has little influence on the spreading velocity of the liquid film, but obvious on the retraction. The maximum spreading factor gradually increases with Weber number increasing. A simple empirical correlation for the maximum spreading factor is obtained. This study conduces significantly to further investigating the dynamic characteristics of droplets impacting on the sphere.
      通信作者: 王关晴, gqwang@hdu.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号: LY15E060007)和国家自然科学基金(批准号: 11574067)资助的课题
      Corresponding author: Wang Guan-Qing, gqwang@hdu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY15E060007) and the National Natural Science Foundation of China (Grant No.11574067)
    [1]

    Hsieh S, Luo S 2016 Int. J. Heat Mass Transfer 92 190Google Scholar

    [2]

    Zama Y, Odawara Y, Furuhata T 2017 Fuel 203 757Google Scholar

    [3]

    Lim T, Han S, Chung J, Chung J T, Ko S, Grigoropoulos C P 2009 Int. J. Heat Mass Transfer 52 431Google Scholar

    [4]

    Gao J, Xu C, Lin S, Yang G, Guo Y 2001 Aiche J. 47 677Google Scholar

    [5]

    Nayak S V, Joshi S L, Ranade V V 2005 Chem. Eng. Sci. 60 6049Google Scholar

    [6]

    Rein M 1993 Fluid Dyn. Res. 12 61Google Scholar

    [7]

    郭加宏, 戴世强, 代钦 2010 59 2601Google Scholar

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601Google Scholar

    [8]

    黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 65 084702Google Scholar

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702Google Scholar

    [9]

    Chandra S, Avedisian C T 1991 P Roy Soc. A-Math. Phy. 432 13Google Scholar

    [10]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 67 184704Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 184704Google Scholar

    [11]

    丁思源, 王瑞祥, 徐荣吉, 张一灏, 蔡骥驰 2016 化工学报 67 2495Google Scholar

    Ding S Y, Wang R X, Xu R J, Zhang Y H, Cai J C 2016 J. Chem. Ind. Eng. 67 2495Google Scholar

    [12]

    Palacios J, Hernández J, Gómez P, Zanzi C, López J 2013 Exp. Therm. Fluid Sci. 44 571Google Scholar

    [13]

    张彬, 韩强, 袁小芳, 李景银 2013 西安交通大学学报 47 23Google Scholar

    Zhang B, Han Q, Yuan X F, Li J Y 2013 J. Xi'an Jiaotong Univ. 47 23Google Scholar

    [14]

    姚一娜, 李聪, 陶振翔, 杨锐 2019 清华大学学报(自然科学版) 59 129Google Scholar

    Yao Y N, Li C, Tao Z, Yang R 2019 J. Tsinghua Univ. (Sci. Technol.) 59 129Google Scholar

    [15]

    Vaikuntanathan V, Kannan R, Sivakumar D 2010 Colloids Surf., A 369 65Google Scholar

    [16]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702Google Scholar

    [17]

    冯伟, 郑刚, 聂万胜 2016 推进技术 37 1136Google Scholar

    Feng W, Zheng G, Nie W S 2016 J. Propul. Technol. 37 1136Google Scholar

    [18]

    赵宇炜, 杨龙滨, 葛坤, 李彦军 2014 燃烧科学与技术 2014 20Google Scholar

    Zhao Y W, Yang L B, Ge K, Li Y J 2014 J. Combust. Sci. Technol. 2014 20Google Scholar

    [19]

    Xie C, Zhang J, Bertola V, Wang M 2016 J. Colloid Interface Sci. 463 317Google Scholar

    [20]

    Khoufech A, Benali M, Saleh K 2015 Powder Technol. 270 599Google Scholar

    [21]

    Huang Q, Zhang H 2008 Pet. Sci. 5 62Google Scholar

    [22]

    Tang C, Qin M, Weng X, Zhang X, Zhang P, Li J, Huang Z 2017 Int. J. Multiphase Flow 96 56Google Scholar

    [23]

    Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [24]

    Khojasteh D, Kazerooni M, Salarian S, Kamali R 2016 J. Ind. Eng. Chem. 42 1Google Scholar

    [25]

    刘邱祖, 寇子明, 韩振南, 高贵军 2013 62 234701Google Scholar

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701Google Scholar

    [26]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185Google Scholar

    [27]

    Khojasteh D, Kazerooni N M, Marengo M 2019 J. Ind. Eng. Chem. 71 50Google Scholar

    [28]

    李玉杰, 黄军杰, 肖旭斌 2018 67 184701Google Scholar

    Li Y J, Huang J J, Xiao X B 2018 Acta Phys. Sin. 67 184701Google Scholar

    [29]

    Liu Y, Andrew M, Li J, Yeomans J M, Wang Z 2015 Nat. Commun. 6 1Google Scholar

    [30]

    Shamit B, Ilia V R, Cam T 2007 Phys. Fluids 19 032102Google Scholar

    [31]

    Liang G, Guo Y, Mu X, Shen S 2014 Exp. Therm. Fluid Sci. 55 150Google Scholar

    [32]

    梁刚涛, 郭亚丽, 沈胜强 2013 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [33]

    Hardalupas Y, Taylor A M K P, Wilkins J H 1999 Int. J. Heat Fluid Fl. 20 477Google Scholar

    [34]

    Zhu Y, Liu H, Mu K, Gao P, Ding H, Lu X 2017 J. Fluid Mech. 82 4Google Scholar

    [35]

    Tabakova S, Feuillebois F 2004 J. Colloid Interface Sci. 272 225Google Scholar

    [36]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112Google Scholar

    [37]

    Range K, Feuillebois F 1998 J. Colloid Interface Sci. 203 16Google Scholar

    [38]

    Huang Y C, Hammitt F G, Yang W J 1973 J. Fluids Eng. 95 276Google Scholar

    [39]

    Clanet C, Béguin C, Richard D, Quéré D 1999 J. Fluid Mech. 517 199Google Scholar

  • 图 1  液滴撞击球面实验装置系统

    Fig. 1.  Experimental set up of the droplet impacting on spherical surface.

    图 2  液滴速度和直径测量 (a)撞击前; (b) 撞击平面; (c) 撞击球面; (d) 速度分析

    Fig. 2.  Measurement of droplet diameter and its velocity: (a) Before impacting; (b) impacting plane; (c) impacting spherical surface; (d) velocity analysis.

    图 3  液滴下落的速度 (δ = 0.05 mm–1, We = 632.76)

    Fig. 3.  Velocity of the falling droplet (δ = 0.05 mm–1, We = 632.76).

    图 4  不同高度下降落液滴撞击时速度

    Fig. 4.  Impacting velocity of falling droplets at different heights.

    图 5  水滴撞击两种曲率球面的动态行为(We = 632.76, Re = 13906.83) (a) δ = 0.05 mm–1; (b) δ = 0.25 mm–1

    Fig. 5.  Dynamic behavior of drops impacting on spherical surface of two curvatures (We = 632.76, Re = 13906.83): (a) δ = 0.05 mm–1; (b) δ = 0.25 mm–1.

    图 6  不同撞击曲率下的动态铺展因子实时分布 $\left( {We = 674 \pm _{83}^{11}, \;Re = 14257 \pm _{1654}^{1025}, \;{V_{{\rm{im}}}} = 3.8{\rm{ m}}/{\rm{s}}} \right)$

    Fig. 6.  Dynamic spreading factor of droplet impacting on different curvatures $\left( {We = 674 \pm _{83}^{11},\;Re = 14257 \pm _{1654}^{1025},} \right.$$\left. {{V_{{\rm{im}}}} = 3.8{\rm{m}}/{\rm{s}}} \right)$

    图 7  动态铺展因子局部放大

    Fig. 7.  Local enlarged image of the Dynamic spreading factor.

    图 8  球面曲率对最大铺展因子的影响

    Fig. 8.  Influence of spherical curvature on the maximum spreading factor.

    图 9  不同韦伯数下液滴撞击球面行为的动态过程 (δ = 0.125 mm–1) (a) We = 171.40; (b) We = 532.87; (c) We = 838.00

    Fig. 9.  Dynamic behavior of droplet impacting on spherical surface for different We (δ = 0.125 mm–1): (a) We = 171.40; (b) We = 532.87; (c) We = 838.00.

    图 10  (a)不同韦伯数下的动态铺展因子的实时变化; (b) 实验与Zhu等[34]相似结果对比

    Fig. 10.  (a) Dynamic spreading factor of droplet impacting for different We; (b) comparison with the results of Zhu et al[34]

    图 11  不同曲率下韦伯数对最大铺展因子的影响

    Fig. 11.  Influence of We on maximum spreading factor for different curvatures.

    表 1  撞击壁面结构参数

    Table 1.  Structure parameters of impacting surface

    壁面结构平面球形球形球形球形球形球形
    撞击小球
    直径 d/mm
    81620406080
    曲率 δ/mm–100.2500.1250.1000.0500.0340.025
    下载: 导出CSV
    Baidu
  • [1]

    Hsieh S, Luo S 2016 Int. J. Heat Mass Transfer 92 190Google Scholar

    [2]

    Zama Y, Odawara Y, Furuhata T 2017 Fuel 203 757Google Scholar

    [3]

    Lim T, Han S, Chung J, Chung J T, Ko S, Grigoropoulos C P 2009 Int. J. Heat Mass Transfer 52 431Google Scholar

    [4]

    Gao J, Xu C, Lin S, Yang G, Guo Y 2001 Aiche J. 47 677Google Scholar

    [5]

    Nayak S V, Joshi S L, Ranade V V 2005 Chem. Eng. Sci. 60 6049Google Scholar

    [6]

    Rein M 1993 Fluid Dyn. Res. 12 61Google Scholar

    [7]

    郭加宏, 戴世强, 代钦 2010 59 2601Google Scholar

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601Google Scholar

    [8]

    黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 65 084702Google Scholar

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702Google Scholar

    [9]

    Chandra S, Avedisian C T 1991 P Roy Soc. A-Math. Phy. 432 13Google Scholar

    [10]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 67 184704Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 184704Google Scholar

    [11]

    丁思源, 王瑞祥, 徐荣吉, 张一灏, 蔡骥驰 2016 化工学报 67 2495Google Scholar

    Ding S Y, Wang R X, Xu R J, Zhang Y H, Cai J C 2016 J. Chem. Ind. Eng. 67 2495Google Scholar

    [12]

    Palacios J, Hernández J, Gómez P, Zanzi C, López J 2013 Exp. Therm. Fluid Sci. 44 571Google Scholar

    [13]

    张彬, 韩强, 袁小芳, 李景银 2013 西安交通大学学报 47 23Google Scholar

    Zhang B, Han Q, Yuan X F, Li J Y 2013 J. Xi'an Jiaotong Univ. 47 23Google Scholar

    [14]

    姚一娜, 李聪, 陶振翔, 杨锐 2019 清华大学学报(自然科学版) 59 129Google Scholar

    Yao Y N, Li C, Tao Z, Yang R 2019 J. Tsinghua Univ. (Sci. Technol.) 59 129Google Scholar

    [15]

    Vaikuntanathan V, Kannan R, Sivakumar D 2010 Colloids Surf., A 369 65Google Scholar

    [16]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702Google Scholar

    [17]

    冯伟, 郑刚, 聂万胜 2016 推进技术 37 1136Google Scholar

    Feng W, Zheng G, Nie W S 2016 J. Propul. Technol. 37 1136Google Scholar

    [18]

    赵宇炜, 杨龙滨, 葛坤, 李彦军 2014 燃烧科学与技术 2014 20Google Scholar

    Zhao Y W, Yang L B, Ge K, Li Y J 2014 J. Combust. Sci. Technol. 2014 20Google Scholar

    [19]

    Xie C, Zhang J, Bertola V, Wang M 2016 J. Colloid Interface Sci. 463 317Google Scholar

    [20]

    Khoufech A, Benali M, Saleh K 2015 Powder Technol. 270 599Google Scholar

    [21]

    Huang Q, Zhang H 2008 Pet. Sci. 5 62Google Scholar

    [22]

    Tang C, Qin M, Weng X, Zhang X, Zhang P, Li J, Huang Z 2017 Int. J. Multiphase Flow 96 56Google Scholar

    [23]

    Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [24]

    Khojasteh D, Kazerooni M, Salarian S, Kamali R 2016 J. Ind. Eng. Chem. 42 1Google Scholar

    [25]

    刘邱祖, 寇子明, 韩振南, 高贵军 2013 62 234701Google Scholar

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701Google Scholar

    [26]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185Google Scholar

    [27]

    Khojasteh D, Kazerooni N M, Marengo M 2019 J. Ind. Eng. Chem. 71 50Google Scholar

    [28]

    李玉杰, 黄军杰, 肖旭斌 2018 67 184701Google Scholar

    Li Y J, Huang J J, Xiao X B 2018 Acta Phys. Sin. 67 184701Google Scholar

    [29]

    Liu Y, Andrew M, Li J, Yeomans J M, Wang Z 2015 Nat. Commun. 6 1Google Scholar

    [30]

    Shamit B, Ilia V R, Cam T 2007 Phys. Fluids 19 032102Google Scholar

    [31]

    Liang G, Guo Y, Mu X, Shen S 2014 Exp. Therm. Fluid Sci. 55 150Google Scholar

    [32]

    梁刚涛, 郭亚丽, 沈胜强 2013 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [33]

    Hardalupas Y, Taylor A M K P, Wilkins J H 1999 Int. J. Heat Fluid Fl. 20 477Google Scholar

    [34]

    Zhu Y, Liu H, Mu K, Gao P, Ding H, Lu X 2017 J. Fluid Mech. 82 4Google Scholar

    [35]

    Tabakova S, Feuillebois F 2004 J. Colloid Interface Sci. 272 225Google Scholar

    [36]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112Google Scholar

    [37]

    Range K, Feuillebois F 1998 J. Colloid Interface Sci. 203 16Google Scholar

    [38]

    Huang Y C, Hammitt F G, Yang W J 1973 J. Fluids Eng. 95 276Google Scholar

    [39]

    Clanet C, Béguin C, Richard D, Quéré D 1999 J. Fluid Mech. 517 199Google Scholar

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究.  , 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [3] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟.  , 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [4] 秦威广, 王进, 纪文杰, 赵文景, 陈聪, 蓝鼎, 王育人. 液-液驱替动力学研究.  , 2022, 71(6): 064701. doi: 10.7498/aps.71.20211682
    [5] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性.  , 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性.  , 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性.  , 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [10] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟.  , 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟.  , 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [12] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [13] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究.  , 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [14] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学.  , 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [15] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [16] 李大鸣, 王志超, 白玲, 王笑. 液滴撞击孔口附近壁面运动过程的模拟研究.  , 2013, 62(19): 194704. doi: 10.7498/aps.62.194704
    [17] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟.  , 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [18] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [19] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究.  , 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [20] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟.  , 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
计量
  • 文章访问数:  8931
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-09-10
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回
Baidu
map