Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent research progress in perovskite solar cells

Chai Lei Zhong Min

Citation:

Recent research progress in perovskite solar cells

Chai Lei, Zhong Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, all-solid state hybrid solar cells based on organic-inorganic metal halide perovskite (ABX3) materials have received much attention from the academic circle all over the world due to their unique physical and chemical properties. The perovskite materials exhibit advantages of high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. Furthermore, they are low cost and easily synthesized. The power conversion efficiency (PCE) has exceeded 20.8% since the PCE of 3.8% was first reported in 2009, making the perovskite solar cells the best potential candidate of the new generation solar cells to replace the high-cost and highly polluting silicon solar cells in the future. Meanwhile, because of the well-known special bipolar properties of the perovskite materials, various structures are designed such as the all-solid state mesoscopic heterojunctions, planar-heterojunctions, meso-superstructures, and HTM-free structures. In this review, we first introduce the development of the perovskite solar cells and then focus on the cell structure and its influence on the cell performance. Besides, the synthesis methods of the perovskite films and the performance characteristics and advantages of the perovskite solar cells with different cell structures are also discussed. It is found that although the perovskite crystals prepared by a one-step spin-coating method have bigger grain sizes, their morphologies are rougher and uncontrollable, which may suppress the charge carrier extraction efficiency and lead to a relatively low power conversion efficiency. Meanwhile, vapor-assisted method needs vaccum conditions, which significantly increases the manufacture cost of PSC. Compared with these methods mentioned above, solution-based sequential deposition method can not only enhance the reproducibility of PSC, but also obtain a higher PCE with a lower cost. Afterwards, the photogenerated carrier transport mechanism of the perovskite solar cells is discussed. The possible atomic interaction model and the electron structure between perovskite film and electron transport layer are proposed. There are two possible interface atomic structures at the interface of perovskite CH3NH3PbI3 and TiO2. It is supposed that the interaction between iodine atoms and titanium atoms dominates the atomic structure at the interface of CH3NH3PbI3 and TiO2, while the lead atoms are believed to bond to oxygen atoms. As is well known, charge extraction, transfer and recombination mainly occur at the interface of a cell. Therefore, the interface engineering including the design for energy level matching is important and necessary to enhance the charge transport efficiency, suppress the charge recombination and eventually improve the performance of perovskite solar cells. Moreover, the properties of the main electron transport layer (ZnO, TiO2, PCBM, Al2O3) and hole transport layer (spiro-OMeTAD, P3 HT, NiO, PTAA) and their influences on the PCE of the perovskite solar cells are discussed. The main challenges of the all-solid state hybrid perovskite solar cells such as environment pollution, the extremely small working areas and the instability are introduced. Finally, the development prospects of perovskite solar cells in the future are proposed in order to have a better understanding of the perovskite solar cells.
      Corresponding author: Zhong Min, zhongmin@cjlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21471140, 21101143).
    [1]

    Cui J, Yuan H L, Li J P, Xu X B, Shen Y, Lin H, Wang M K 2015 Sci. Technol. Adv. Mater. 16 036004

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2012 Prog. Photovoltaics 20 12

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [4]

    Bi D Q, Tress W G, Dar M I, Gao P, Luo J S, Renevier C, Schenk K, Abate A, Giordano F, Baena J P, Decoppe J, Zakeeruddin S M, Nazeeruddin M K, Grötzel M, Hagfeldt A 2016 Sci. Adv. Mater. 2 e1501170

    [5]

    Li Y W, Meng L, Yang Y, Xu G Y, Hong Z, Chen Q, You J B, Li G, Yang Y, Li Y F 2015 Nat. Commun. 7 10214

    [6]

    Gao P, Gratze M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Zhao Y X, Zhu K 2015 J. Mater. Chem. A 3 9086

    [9]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [10]

    Chen Q, Zhou H P, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [11]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [12]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [13]

    Zhang W, Eperson G E, Snaith H J 2016 Nature Energy 160 48

    [14]

    Hsiao Y C, Wu T, Li M X, Liu Q, Wei Q, Hu B 2015 J. Mater. Chem. A 3 15372

    [15]

    Liu D Y, Kelly T L 2014 Nat. Photonics 8 133

    [16]

    D'Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [17]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [18]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [19]

    Hardin B E, Snaith H J, McGehee M D 2012 Nat. Photonics 6 162

    [20]

    Heo J H, Song D H, Patil B R, Im S H 2015 Isr. J. Chem. 55 966

    [21]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591

    [22]

    Heo J H, Im S H, Noh J H, Madal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I 2013 Nat. Photonics 7 486

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [24]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S 2015 Science 348 6240

    [25]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [26]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Gratzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photonics 8 128

    [27]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [28]

    Im J H, Jang I H, Pellet N, Gratzel M, Park N G 2014 Nat. Nanotechnol. 9 927

    [29]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [30]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2015 Science 345 6196

    [31]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [32]

    Bi D, Moon S J, Higgman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Gratzel M 2013 RSC Adv. 3 18762

    [33]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2015 Science 345 6194

    [34]

    Chen J Z, Rong Y G, Mei A Y, Xiong Y L, Liu T F, Sheng Y S, Jiang P, Hong L, Guan Y J, Zhu X T, Hou X M, Duan M, Zhao J Q, Li X, Han H W 2015 Adv. Energy Mater. 15 02009

    [35]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [36]

    Shi J, Dong J, L S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [37]

    Heo J H, Song D H, Im S H 2014 Adv. Mater. 26 8179

    [38]

    Lawrence C J 1988 Phys. Fluids 31 2786

    [39]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [40]

    Zuo C, Ding L 2014 Nanoscale 6 9935

    [41]

    Xiao M, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, G-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. 126 10056

    [42]

    Sun L C 2015 Nat. Chem. 7 684

    [43]

    Salau A M, Sol 1980 Energy Mater. 2 327

    [44]

    Mitzi D B, Prikas M T, Chondroudis K 1999 Chem. Mater. 11 542

    [45]

    Roldn-Carmona C, Malinkiewicz O, Soriano A, Mnguez Espallargas G, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994

    [46]

    Shao Z P, Pan X, Zhang X H, Ye J J, Zhu L Z, Li Y, Ma Y M, Huang Y, Zhu J, Hu L H, Dai S Y 2015 Acta Chim. Sin. 73 267 (in Chinese)[邵志鹏, 潘旭, 张旭辉, 叶加久, 朱梁正, 李毅, 马艳梅, 黄阳, 朱俊, 胡林华, 孔凡太, 戴松元2015化学学报73 267]

    [47]

    Xue Q F, Sun C, Hu Z C, Huang F, Ye X L, Cao Y 2015 Acta Chim. Sin. 73 179 (in Chinese)[薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛2015化学学报73 179]

    [48]

    Shi J J, Xu X, Li D M, Meng Q B 2015 Small 2014 03534

    [49]

    Roiati V, Mosconi E, Listorti A, Colella S, Gigli G, Angelis F D 2014 Nano Lett. 14 2168

    [50]

    Geng W, Tong C J, Liu J, Zhu W J, Lau W M, Liu L M 2016 Sci. Rep. 6 20131

    [51]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Grötzel M 2014 Nano Lett. 14 2591

    [52]

    Dong X, Hu H, Lin B, Ding J, Yuan N 2014 Chem. Commun. 50 14405

    [53]

    Snaith H J, Grätzel M 2006 Adv. Mater. 18 1910

    [54]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

    [55]

    Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q 2014 ACS Nano 8 10161

    [56]

    Ding X J, Ni L, Ma S B, Ma Y S, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802 (in Chinese)[丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚2015 64 038802]

    [57]

    Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips D L, Yang S 2014 J. Am. Chem. Soc. 136 3760

    [58]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [59]

    Xiao Y, Han G, Li Y, Li M, Wu J 2014 J. Mater. Chem. A 2 16856

    [60]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grötzel M, Han H 2014 Science 345 295

    [61]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [62]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A:Chem. 161 205

    [63]

    Wang K, Shi Y T, Dong Q S, Li Y, Wang S F, Yu X F, Wu M Y, Ma T L 2015 J. Phys. Chem. Lett. 6 755

    [64]

    Yang D, Yang R X, Zhang J, Yang Z, Liu S Z, Li C 2015 Energy Environ. Sci. 8 3208

    [65]

    Fu F, Feurer T, Jager T, Avancini E, Bissig B, Yoon S, Buecheler S, Tiwari A N 2015 Nat. Commun. 6 8932

    [66]

    Song Z H, Wang S R, Xiao Y, Li X G 2015 Acta Phys. Sin. 64 033301 (in Chinese)[宋志浩, 王世荣, 肖殷, 李祥高2015 64 033301]

    [67]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [68]

    Xu B, Bi D Q, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L C 2016 Energy Environ. Sci. DOI:10.1039/C6EE00056H

    [69]

    Wang Y K, Yuan Z C, Shi G Z, Li Y X, Li Q, Hui F, Sun B Q, Jiang Z Q, Liao L S 2016 Adv. Funct. Mater. DOI:10.1002/adfm.201504245

    [70]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, XiaoY, Li D M 2014 Chem. Commun. 50 5829

    [71]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [72]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grötzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [73]

    Li H R, Fu K, Hagfeldt A, Grötzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [74]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [75]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [76]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grötzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [77]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [78]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grötzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 8 516

    [79]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [80]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [81]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [82]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [83]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [84]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grötzel M 2014 Nat. Commun. 5 3834

    [85]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [86]

    Feng H, Stoumpos C, Cao D H, Chang P H, Kanatzidis M G 2014 Nat. Photonics 8 489

    [87]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E, Ashraful I, Grötzel M, Han L Y 2015 Science 350 6263

    [88]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner T M, Haghighirad A, Sakai N, Korte L, Rech B, Johnston B M, Herz M L, Snaith H J 2016 Science 351 6269

  • [1]

    Cui J, Yuan H L, Li J P, Xu X B, Shen Y, Lin H, Wang M K 2015 Sci. Technol. Adv. Mater. 16 036004

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2012 Prog. Photovoltaics 20 12

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [4]

    Bi D Q, Tress W G, Dar M I, Gao P, Luo J S, Renevier C, Schenk K, Abate A, Giordano F, Baena J P, Decoppe J, Zakeeruddin S M, Nazeeruddin M K, Grötzel M, Hagfeldt A 2016 Sci. Adv. Mater. 2 e1501170

    [5]

    Li Y W, Meng L, Yang Y, Xu G Y, Hong Z, Chen Q, You J B, Li G, Yang Y, Li Y F 2015 Nat. Commun. 7 10214

    [6]

    Gao P, Gratze M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Zhao Y X, Zhu K 2015 J. Mater. Chem. A 3 9086

    [9]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [10]

    Chen Q, Zhou H P, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [11]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [12]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [13]

    Zhang W, Eperson G E, Snaith H J 2016 Nature Energy 160 48

    [14]

    Hsiao Y C, Wu T, Li M X, Liu Q, Wei Q, Hu B 2015 J. Mater. Chem. A 3 15372

    [15]

    Liu D Y, Kelly T L 2014 Nat. Photonics 8 133

    [16]

    D'Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [17]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [18]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [19]

    Hardin B E, Snaith H J, McGehee M D 2012 Nat. Photonics 6 162

    [20]

    Heo J H, Song D H, Patil B R, Im S H 2015 Isr. J. Chem. 55 966

    [21]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591

    [22]

    Heo J H, Im S H, Noh J H, Madal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I 2013 Nat. Photonics 7 486

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [24]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S 2015 Science 348 6240

    [25]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [26]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Gratzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photonics 8 128

    [27]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [28]

    Im J H, Jang I H, Pellet N, Gratzel M, Park N G 2014 Nat. Nanotechnol. 9 927

    [29]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [30]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2015 Science 345 6196

    [31]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [32]

    Bi D, Moon S J, Higgman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Gratzel M 2013 RSC Adv. 3 18762

    [33]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2015 Science 345 6194

    [34]

    Chen J Z, Rong Y G, Mei A Y, Xiong Y L, Liu T F, Sheng Y S, Jiang P, Hong L, Guan Y J, Zhu X T, Hou X M, Duan M, Zhao J Q, Li X, Han H W 2015 Adv. Energy Mater. 15 02009

    [35]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [36]

    Shi J, Dong J, L S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [37]

    Heo J H, Song D H, Im S H 2014 Adv. Mater. 26 8179

    [38]

    Lawrence C J 1988 Phys. Fluids 31 2786

    [39]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [40]

    Zuo C, Ding L 2014 Nanoscale 6 9935

    [41]

    Xiao M, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, G-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. 126 10056

    [42]

    Sun L C 2015 Nat. Chem. 7 684

    [43]

    Salau A M, Sol 1980 Energy Mater. 2 327

    [44]

    Mitzi D B, Prikas M T, Chondroudis K 1999 Chem. Mater. 11 542

    [45]

    Roldn-Carmona C, Malinkiewicz O, Soriano A, Mnguez Espallargas G, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994

    [46]

    Shao Z P, Pan X, Zhang X H, Ye J J, Zhu L Z, Li Y, Ma Y M, Huang Y, Zhu J, Hu L H, Dai S Y 2015 Acta Chim. Sin. 73 267 (in Chinese)[邵志鹏, 潘旭, 张旭辉, 叶加久, 朱梁正, 李毅, 马艳梅, 黄阳, 朱俊, 胡林华, 孔凡太, 戴松元2015化学学报73 267]

    [47]

    Xue Q F, Sun C, Hu Z C, Huang F, Ye X L, Cao Y 2015 Acta Chim. Sin. 73 179 (in Chinese)[薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛2015化学学报73 179]

    [48]

    Shi J J, Xu X, Li D M, Meng Q B 2015 Small 2014 03534

    [49]

    Roiati V, Mosconi E, Listorti A, Colella S, Gigli G, Angelis F D 2014 Nano Lett. 14 2168

    [50]

    Geng W, Tong C J, Liu J, Zhu W J, Lau W M, Liu L M 2016 Sci. Rep. 6 20131

    [51]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Grötzel M 2014 Nano Lett. 14 2591

    [52]

    Dong X, Hu H, Lin B, Ding J, Yuan N 2014 Chem. Commun. 50 14405

    [53]

    Snaith H J, Grätzel M 2006 Adv. Mater. 18 1910

    [54]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

    [55]

    Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q 2014 ACS Nano 8 10161

    [56]

    Ding X J, Ni L, Ma S B, Ma Y S, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802 (in Chinese)[丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚2015 64 038802]

    [57]

    Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips D L, Yang S 2014 J. Am. Chem. Soc. 136 3760

    [58]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [59]

    Xiao Y, Han G, Li Y, Li M, Wu J 2014 J. Mater. Chem. A 2 16856

    [60]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grötzel M, Han H 2014 Science 345 295

    [61]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [62]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A:Chem. 161 205

    [63]

    Wang K, Shi Y T, Dong Q S, Li Y, Wang S F, Yu X F, Wu M Y, Ma T L 2015 J. Phys. Chem. Lett. 6 755

    [64]

    Yang D, Yang R X, Zhang J, Yang Z, Liu S Z, Li C 2015 Energy Environ. Sci. 8 3208

    [65]

    Fu F, Feurer T, Jager T, Avancini E, Bissig B, Yoon S, Buecheler S, Tiwari A N 2015 Nat. Commun. 6 8932

    [66]

    Song Z H, Wang S R, Xiao Y, Li X G 2015 Acta Phys. Sin. 64 033301 (in Chinese)[宋志浩, 王世荣, 肖殷, 李祥高2015 64 033301]

    [67]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [68]

    Xu B, Bi D Q, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L C 2016 Energy Environ. Sci. DOI:10.1039/C6EE00056H

    [69]

    Wang Y K, Yuan Z C, Shi G Z, Li Y X, Li Q, Hui F, Sun B Q, Jiang Z Q, Liao L S 2016 Adv. Funct. Mater. DOI:10.1002/adfm.201504245

    [70]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, XiaoY, Li D M 2014 Chem. Commun. 50 5829

    [71]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [72]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grötzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [73]

    Li H R, Fu K, Hagfeldt A, Grötzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [74]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [75]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [76]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grötzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [77]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [78]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grötzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 8 516

    [79]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [80]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [81]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [82]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [83]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [84]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grötzel M 2014 Nat. Commun. 5 3834

    [85]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [86]

    Feng H, Stoumpos C, Cao D H, Chang P H, Kanatzidis M G 2014 Nat. Photonics 8 489

    [87]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E, Ashraful I, Grötzel M, Han L Y 2015 Science 350 6263

    [88]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner T M, Haghighirad A, Sakai N, Korte L, Rech B, Johnston B M, Herz M L, Snaith H J 2016 Science 351 6269

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Research on the fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241238
    [4] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [5] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [11] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [13] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [14] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [15] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [16] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [17] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [18] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
Metrics
  • Abstract views:  15355
  • PDF Downloads:  1979
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2016
  • Accepted Date:  07 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map