搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真

秦飞飞 张海明 王彩霞 郭聪 张晶晶

引用本文:
Citation:

基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真

秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶

Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells

Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing
PDF
导出引用
  • 本文提出了表面和底部均带有阳极氧化铝(AAO)纳米光栅的薄膜硅太阳能电池双重陷光结构,利用FDTD软件仿真研究了AAO纳米光栅的周期、厚度和占空比对薄膜硅太阳能电池短路电流密度的影响,并对AAO结构参数进行了优化. 仿真结果表明,表面AAO最佳结构参数是周期440 nm,厚度75 nm,占空比0.5,底部AAO最佳结构参数是周期380 nm,厚度90 nm,占空比为0.75. 双重AAO组合陷光结构可有效增加薄膜硅太阳能电池在280–1100 nm范围内的光吸收,吸收相对增强可以达到74.44%.
    In this paper, we design a type of light trapping structure with an anodic aluminum oxide (AAO) nanograting on the surface and the backside of thin Si solar cells. Simulation of the influence of AAO's period, hole thickness, and duty cycle on thin Si solar cell's short current density are carried out by finite difference time domain method. Simulation results show that the optimum size for surface AAO is 0.5 for duty cycle, 75 nm for thickness, 440nm for period, and the optimum AAO size for rear AAO is 0.75 for duty cycle, 90nm for thickness, 380nm for period. The double AAO light trapping structure can increase the light absorption in the wavelength range from 280 to 1100nm,the absorption relative enhancement is 74.44%.
    • 基金项目: 国家自然科学基金(批准号:61274064)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274064).
    [1]

    Chen J Y, Chang W L, Huang C K, Sun K W 2011 Opt. Express 19 14411

    [2]

    Sun C H, Ho B J, Jiang B, Jiang P 2008 Opt. Lett. 33 2224

    [3]

    Mizutani A, Kanamori Y, Maruyama A, Kikuta H 2009 J. Opt. Soc. Am. A 26 337

    [4]

    Li Y F, Zhang J H, Yang B 2010 Nano Today 5 117

    [5]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 Appl. Phys. 83 3323

    [6]

    Wada K, Kimerling L C, Toyodan N 2004 Patent 6 750 393

    [7]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kinerling L C, Alamairu B A 2006 Appl. Phys. Let. 89 111111

    [8]

    Zhu Z P, Qin Y Q 2013 Acta Phys. Sin. 62 157801(in Chinese) [朱兆平, 秦亦强 2013 62 157801]

    [9]

    Li G L, He L J, L J, Li X S, Liang S, Gao M M, Yuan H W 2013 Acta Phys. Sin. 62 197202(in Chinese) [李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙 袁海雯 2013 62 197202]

    [10]

    Fang J, Qi Y H, Wang C R, Wei Z, Fang Y Q, Yi Z Z, Jing X 2012 Microelectron. Eng. 103 126

    [11]

    Bermel P, Luo C Y, Zeng L R, Lionel C, Kimerling, John D 2007 Opt. Express 15 16986

    [12]

    Zhong H, Gao Y Y, Zhou R L, Zhou B J, Tang LQ, Wu L X, Li H J 2011 Spectrosc. Spect. Anal. 3 1739(in Chinese) [钟慧, 高永毅, 周仁龙, 周并举, 唐立强, 吴玲锡, 李宏建 2011 光谱学与光谱分析 3 1739]

    [13]

    Cheng F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [14]

    James G M, Shi S Y, Chen C H, Timothy C, Allen B, Christiana H, Dennis W P 2008 Opt. Express 16 15238

    [15]

    Joannopoulos J D, Johnson S G, Winn J N Meade R D 2008 Photonic Crystals: Molding The Flow of Light (Princeton: Princeton University Press) p44

    [16]

    Sheng P, Bloch A, Stepleman R 1983 Appl. Phys. Lett. 43 579

    [17]

    Morf R H, Kiess H 1989 Proceedings of Ninth E. C. Photovoltaic Solar Energy Conference Freiburg, West Germany, September 25-29, 1999 p313

    [18]

    Kiess H, Morf R H 1989 Proceedings of the Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VⅢ San Diego, USA, August 10-11, 1989 p124

    [19]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [20]

    Zheng C G, Jiang J L, Xian F L, Qiang H X, Wu H, Li X Y 2011 Chin. Phys. B 20 094201

    [21]

    Masuda H, Fukuda K 1995 Science 268 1466

    [22]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 626(in Chinese) [刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏龙 2004 53 626]

    [23]

    Shimizu T, Nagayanagi M, Ishida T, Sakata O, Oku T, Sakaue H, Takahagi T, Shingubara S 2006 Elctrochem. Solid-State Lett. 9 13

    [24]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [25]

    Sheng X, Liu J F, Coronel N, Agarwal A M, Michel, Kimling L C 2010 IEEE Photonic. Tech. L. 22 1394

    [26]

    Yang T S, Wang X D, Liu W, Shi Y P, Yang F H 2013 Opt. Express 21 18207

    [27]

    Sheng X, Liu J F, Michel J, Agarwal A G, Kimerling L C 2009 Proceedings of the 34th IEEE Photovoltaic Specialists Conference Philadelphia, PA, June 7-12, 2009 p2395

  • [1]

    Chen J Y, Chang W L, Huang C K, Sun K W 2011 Opt. Express 19 14411

    [2]

    Sun C H, Ho B J, Jiang B, Jiang P 2008 Opt. Lett. 33 2224

    [3]

    Mizutani A, Kanamori Y, Maruyama A, Kikuta H 2009 J. Opt. Soc. Am. A 26 337

    [4]

    Li Y F, Zhang J H, Yang B 2010 Nano Today 5 117

    [5]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 Appl. Phys. 83 3323

    [6]

    Wada K, Kimerling L C, Toyodan N 2004 Patent 6 750 393

    [7]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kinerling L C, Alamairu B A 2006 Appl. Phys. Let. 89 111111

    [8]

    Zhu Z P, Qin Y Q 2013 Acta Phys. Sin. 62 157801(in Chinese) [朱兆平, 秦亦强 2013 62 157801]

    [9]

    Li G L, He L J, L J, Li X S, Liang S, Gao M M, Yuan H W 2013 Acta Phys. Sin. 62 197202(in Chinese) [李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙 袁海雯 2013 62 197202]

    [10]

    Fang J, Qi Y H, Wang C R, Wei Z, Fang Y Q, Yi Z Z, Jing X 2012 Microelectron. Eng. 103 126

    [11]

    Bermel P, Luo C Y, Zeng L R, Lionel C, Kimerling, John D 2007 Opt. Express 15 16986

    [12]

    Zhong H, Gao Y Y, Zhou R L, Zhou B J, Tang LQ, Wu L X, Li H J 2011 Spectrosc. Spect. Anal. 3 1739(in Chinese) [钟慧, 高永毅, 周仁龙, 周并举, 唐立强, 吴玲锡, 李宏建 2011 光谱学与光谱分析 3 1739]

    [13]

    Cheng F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [14]

    James G M, Shi S Y, Chen C H, Timothy C, Allen B, Christiana H, Dennis W P 2008 Opt. Express 16 15238

    [15]

    Joannopoulos J D, Johnson S G, Winn J N Meade R D 2008 Photonic Crystals: Molding The Flow of Light (Princeton: Princeton University Press) p44

    [16]

    Sheng P, Bloch A, Stepleman R 1983 Appl. Phys. Lett. 43 579

    [17]

    Morf R H, Kiess H 1989 Proceedings of Ninth E. C. Photovoltaic Solar Energy Conference Freiburg, West Germany, September 25-29, 1999 p313

    [18]

    Kiess H, Morf R H 1989 Proceedings of the Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VⅢ San Diego, USA, August 10-11, 1989 p124

    [19]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [20]

    Zheng C G, Jiang J L, Xian F L, Qiang H X, Wu H, Li X Y 2011 Chin. Phys. B 20 094201

    [21]

    Masuda H, Fukuda K 1995 Science 268 1466

    [22]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 626(in Chinese) [刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏龙 2004 53 626]

    [23]

    Shimizu T, Nagayanagi M, Ishida T, Sakata O, Oku T, Sakaue H, Takahagi T, Shingubara S 2006 Elctrochem. Solid-State Lett. 9 13

    [24]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [25]

    Sheng X, Liu J F, Coronel N, Agarwal A M, Michel, Kimling L C 2010 IEEE Photonic. Tech. L. 22 1394

    [26]

    Yang T S, Wang X D, Liu W, Shi Y P, Yang F H 2013 Opt. Express 21 18207

    [27]

    Sheng X, Liu J F, Michel J, Agarwal A G, Kimerling L C 2009 Proceedings of the 34th IEEE Photovoltaic Specialists Conference Philadelphia, PA, June 7-12, 2009 p2395

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究.  , 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [3] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究.  , 2021, (): . doi: 10.7498/aps.70.20210855
    [4] 潘恒, 陈沛润, 石标, 李玉成, 高清运, 张力, 赵颖, 黄茜, 张晓丹. 钙钛矿电池纳米陷光结构的研究进展.  , 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [5] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究.  , 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [6] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构.  , 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [7] 黄运欢, 李璞. 金纳米棒复合体的消光特性.  , 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [8] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [9] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [10] 张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静. 纳米压印多孔硅模板的研究.  , 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [11] 陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖. 基于一维光子晶体的新型背反射器及其在非晶硅薄膜太阳电池中的应用.  , 2014, 63(7): 077301. doi: 10.7498/aps.63.077301
    [12] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究.  , 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [13] 于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖. PIN型和NIP型硅薄膜太阳电池中绒面陷光结构和陷光性能研究.  , 2013, 62(12): 120101. doi: 10.7498/aps.62.120101
    [14] 吴婧, 王鸣. 胶体晶体微结构光纤传输特性研究.  , 2012, 61(6): 064215. doi: 10.7498/aps.61.064215
    [15] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [16] 张军, 于天宝, 刘念华, 廖清华, 何灵娟. 全内反射型三角晶格光子晶体多模波导中的光传播特性.  , 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [17] 张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华. 新型高效偏振光分束器的设计.  , 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [18] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计.  , 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [19] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究.  , 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [20] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布.  , 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
计量
  • 文章访问数:  6284
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-22
  • 修回日期:  2014-05-27
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map