搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双修饰策略制备高性能反式钙钛矿太阳能电池的研究

张晓春 王立坤 商文丽 万政慧 岳鑫 杨华翼 李婷 王辉

引用本文:
Citation:

基于双修饰策略制备高性能反式钙钛矿太阳能电池的研究

张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉

Research on the fabrication of high-performance inverted perovskite solar cells based on dual modification strategy

Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui
PDF
导出引用
  • 反式(p-i-n)钙钛矿太阳能电池(PSCs)因其具有转化效率高、稳定性好等优点受到越来越多的关注。制约反式钙钛矿电池效率提升的主要因素是钙钛矿层和电荷传输层之间的界面缺陷。因此,本文基于1,3-二氨基丙烷二氢碘(PDADI)双修饰策略钝化钙钛矿薄膜与电荷传输层界面缺陷,提高了钙钛矿薄膜成膜质量,抑制了钙钛矿薄膜与电荷传输层之间的非辐射复合,制备了转化效率为23.19%的反式钙钛矿太阳能电池,为制备高效反式钙钛矿太阳能电池提供了一种有效策略。
    Inverted (p-i-n) perovskite solar cells (PSCs) are receiving increasing attention due to their high conversion efficiency and good stability. The main factor restricting the efficiency improvement of inverted perovskite cells is the interface defects between the perovskite layer and the charge transport layers. Therefore, the dual modification strategy of 1,3-diaminopropane dihydroiodide (PDADI) passivates the interface defects between perovskite films and charge transport layers, improves the quality of perovskite film formation, suppresses non radiative recombination between perovskite films and charge transport layers as well as improved charge carrier transport, and results in a conversion efficiency of 23.19%. Furthermore, the unencapsulated PSCs with PDADI dual modification also exhibit good storage stability, after being placed at a temperature of 25 ℃ and a humidity of less than 20% for 600 hours, the efficiency remained at 96% of the initial efficiency. Therefore, PDADI dual modification providing an effective strategy for the fabrication of high-efficiency and stable inverted perovskite solar cells.
  • [1]

    Zhou Q S, Liu X X, Liu Z H, Zhu Y Q, Lu J F, Chen Z M, Li C J, Wang J, Xue Q F, He F F, Liang J, Li H Y, Wang S H, Tai Q D, Zhang Y Q, Liu J H, Zuo C T, Ding L M, Xiong Z H, Zheng R H, Zhang H M, Zhao P J, Jin X, Wu P F, Zhang F, Jiang Y, Zhou H P, Hu J S, Wang Y, Song Y L, Mai Y H, Xu B M, Liu S Z, Han L Y, Chen W 2024 Mater. Futures 3 022102

    [2]

    Luo X H, Lin X S, Gao F, Zhao Y, Li X D, Zhan L Q, Qiu Z X, Wang J, Chen C, Meng L, Gao X F, Zhang Y, Huang Z J, Fan R D, Liu H F, Chen Y R, Ren X X, Tang J H, Chen C H, Yang D, Tu Y G, Liu X, Liu D X, Zhao Q, You J B, Fang J F, Wu Y Z, Han H W, Zhang X D, Zhao D W, Huang F Z, Zhou H P, Yuan Y B, Chen Q, Wang Z K, (Frank) Liu S Z, Zhu R, Nakazaki J, Li Y F, Han L Y Sci. China Chem. 65 2369

    [3]

    Fei C B, Li N X, Wang M R, Wang X M, Gu H Y, Chen B, Zhang Z, Ni Z Y, Jiao H Y, Xu W Z, Shi Z F, Yan Y F, Huang J S 2023 Science 380 823

    [4]

    Tan Q, Li Z N, Luo G F, Zhang X S, Che B, Chen G C, Gao H, He D, Ma G Q, Wang J F, Xiu J W, Yi H Q, Chen T, He Z B 2023 Nature 620 545

    [5]

    Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278

    [6]

    Li Z, Li B, Wu X, Sheppard S A, Zhang S F, Gao D P, Long N J, Zhu Z L 2022 Science 376 416

    [7]

    Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404

    [8]

    Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics. 17 478

    [9]

    Wang H F, Su S J, ChenY T, Ren M, Wang S W, Wang Y, Zhu C, Miao Y F, Ouyang C Y, Zhao Y X 2024 Nature 634 1091

    [10]

    Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X, Li S, Gong J Q, Luther J M, Li Z A, Zhu Z L 2023 Science 382 284

    [11]

    Liu C, Yang Y, Chen H, Xu J, Liu A, Bati A S R, Zhu H H, Grater L, Hadke S S, Huang C Y, Sangwan V K, Cai T, Shin D, Chen L X, Hersam M C, Mirkin C A, Chen B, Kanatzidis M G, Sargent E H 2023 Science 382 810

    [12]

    Degani M, An Q Z, Albaladejo-Siguan M, Hofstetter Y J, Cho C, Paulus F, Grancini G, Vaynzol Y 2021 Sci. Adv. 7 7930

    [13]

    Zhang X, Qiu W M, Apergi S, Singh S, Marchezi P, Song W Y, Sternemann C, Elkhouly K, Zhang D, Aguirre A, Merckx T, Krishna A, Shi Y Y, Bracesco A, Helvoirt C V, Bens F, Zardetto V, D’Haen J, Yu A R, Brocks G, Aernouts T, Moons E, Tao S X, Zhan Y Q, Kuang Y H, Poortmans J 2023 ACS. Energy Lett. 8 2532

    [14]

    Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z J, Sargent E H 2024 Science 384 189

    [15]

    Li Y, Wang Y H, Xu Z C, Peng B, Li X F 2024 ACS. Nano. 18 10688

    [16]

    Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278

    [17]

    Zhang J, Zheng X X, Cui Q Y, Yao Y Y, Su H, She Y T, Zhu Y J, Li D, Liu S Z 2024 Adv. Funct. Mater. 34 2404816

    [18]

    Zhao C X, Zhang Q, Lyu Y, Liu J, Shen F, Liu H J, Kong H, Han H F, Krishna A, Xu J, Zhang H, Yao J X 2024 Adv. Funct. Mater. 34 2404099

    [19]

    Cao Y, Yan N, Wang M Z, Qi D Y, Zhang J F, Chen X, Qin R, Xiao F W, Zhao G T, Liu Y C, Cai X D, Zhao K, Liu S Z,Feng J S 2024 Angew. Chem. Int. Ed. 63 202404401

    [20]

    Uddin M A, Rana P J S, Ni Z Y, Yang G, Li M Z, Wang M R, Gu H Y, Zhang H K, Dou B D, Huang J S 2024 Nat. Commun. 15 1355

    [21]

    Liu S W, Guan X Y, Xiao W S, Chen R, Zhou J, Ren F M, Wang J N, Chen W T, Li S B, Qiu L B, Zhao Y, Liu Z H, Chen W 2022 Adv. Funct. Mater. 32 2205009

    [22]

    Zhang F, Lu H, Larson B W, Xiao C X, Dunfield S P, Obadiah G. Reid O G, Chen X H, Yang M, Berry J J, Beard M C Chem 7 774

    [23]

    Chen H, Maxwell A, Li C W, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J K, Wang Z W, Zeng L W, Park S M, Chen L, Serles P, Awni R A, Subedi B, Zheng X P, Xiao C X, Podraza N J, Filleter T, Liu C, Yang Y, Luther J M, Wolf S D, Kanatzidis M G, Yan Y F, Sargent E H 2023 Nature 613 676

    [24]

    Lan Z R, Wang Y D, Shao J Y, Ma D X, Liu Z H, Li D M, Hou Y, Yao J N, Zhong Y W 2024 Adv. Funct. Mater. 34 2312426

    [25]

    Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934

    [26]

    Wang Y T, Lin J Y, He Y L, Yi Zhang Y, Qiong L Q, Liu F Z, Zhou Z W, Chan C C S, Gang Li G, Feng S P, Ng A M C, Wong K S, Popovi´c J, Djuriši´ A B 2022 Sol. RRL. 6 2200224

    [27]

    Fu Y, Liu X C, Zhao S S 2022 Chem. Nano. Mat. 8 202200091

    [28]

    Han Q, Bae S H, Sun P, Hsieh Y H, (Michael) Yang Y, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y 2016 Adv. Mater. 28 2253

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应.  , doi: 10.7498/aps.73.20231568
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究.  , doi: 10.7498/aps.73.20240827
    [3] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性.  , doi: 10.7498/aps.73.20231678
    [4] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响.  , doi: 10.7498/aps.73.20231631
    [5] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池.  , doi: 10.7498/aps.73.20231846
    [6] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能.  , doi: 10.7498/aps.72.20230636
    [7] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究.  , doi: 10.7498/aps.72.20230230
    [8] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究.  , doi: 10.7498/aps.72.20221461
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制.  , doi: 10.7498/aps.71.20220725
    [10] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青. 二维氟代苯甲胺钙钛矿结构和光电性能的理论研究.  , doi: 10.7498/aps.71.20220802
    [11] 刘钰雪, 明逸东, 吴聪聪. 氯掺杂甲胺基钙钛矿电池的性能及其改进.  , doi: 10.7498/aps.71.20220966
    [12] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展.  , doi: 10.7498/aps.71.20220359
    [13] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展.  , doi: 10.7498/aps.70.20201896
    [14] 高九林, 连亚军, 杨晔, 李国庆, 杨晓晖. 采用硫氰酸铵添加剂的高效天蓝色钙钛矿发光二极管.  , doi: 10.7498/aps.70.20211046
    [15] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制.  , doi: 10.7498/aps.68.20190569
    [16] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展.  , doi: 10.7498/aps.68.20190468
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展.  , doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展.  , doi: 10.7498/aps.64.033301
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展.  , doi: 10.7498/aps.64.038802
    [20] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究.  , doi: 10.7498/aps.64.038402
计量
  • 文章访问数:  103
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-14

/

返回文章
返回
Baidu
map