搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含钨难熔高熵合金的制备、结构与性能

黄文军 乔珺威 陈顺华 王雪姣 吴玉程

引用本文:
Citation:

含钨难熔高熵合金的制备、结构与性能

黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程

Preparation, structures and properties of tungsten-containing refractory high entropy alloys

Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng
PDF
HTML
导出引用
  • 高熵合金(high-entropy alloys, HEAs)作为一种新型多主元合金, 原子排列有序、化学无序, 具有高熵、晶格畸变、缓慢扩散、“鸡尾酒”等四大效应, 表现出优异的组合性能, 有望作为新型高温结构材料、耐磨性材料、抗辐照材料应用于航空航天、矿山机械、核聚变反应堆等领域. 本文介绍了目前含钨HEAs的发展现状、常用的制备方法、微观结构和相组成. 针对HEAs优异的综合性能, 总结了目前含钨难熔HEAs的力学性能、抗摩擦磨损、抗辐照等性能, 对含钨难熔HEAs后续的研究方向进行了展望.
    As a new type of multi-principal component solid solution alloy, high-entropy alloy has the four major effects, i.e. high entropy, lattice distortion, slow diffusion, and “cocktail” in orderly arrangement of atoms and chemical disorder. It exhibits excellent comprehensive performances and is expected to be used as a new type of high-temperature structural material, wear-resistant material, and radiation-resistant material, which is used in the areas of aerospace, mining machinery, nuclear fusion reactors and others. In this paper, the present research status, conventional preparation methods, microstructures and phase compositions of tungsten high entropy alloys are mainly introduced. In view of the excellent comprehensive properties of high-entropy alloys, the mechanical properties, friction and wear resistance, and radiation resistance of tungsten high-entropy alloys are summarized, and the future research directions of tungsten high-entropy alloys are also prospected.
      通信作者: 吴玉程, ycwu@hfut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2014GB121000, 2019YFE03120002)和国家自然科学基金(批准号: 514740830, 52020105014, 51828101)资助的课题
      Corresponding author: Wu Yu-Cheng, ycwu@hfut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2014GB121000, 2019YFE03120002) and the National Natural Science Foundation of China (Grant Nos. 514740830, 52020105014, 51828101)
    [1]

    Knaster J, Moeslang A, Muroga T 2016 Nat. Phys. 12 424Google Scholar

    [2]

    Phillips N W, Yu H, Das S, Yang D, Mizohata K, Liu W, Xu R, Harder R J, Hofmann F 2020 Acta Mater. 195 219Google Scholar

    [3]

    Gilbert M R, Dudarev S L, Zheng S, Packer L W, Sublet J C 2012 Nucl. Fusion 52 083019

    [4]

    马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波 2019 68 040702Google Scholar

    Ma Y T, Liu J B, Han L, Tian L F, Wang X C, Meng X M, Xiao S Q, Wang B 2019 Acta Phys. Sin. 68 040702Google Scholar

    [5]

    郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 65 077803Google Scholar

    Guo H Y, Xia M, Yan Q Z, Guo L P, Chen J H, Ge C C 2016 Acta Phys. Sin. 65 077803Google Scholar

    [6]

    Tan X, Luo L, Chen H, Zhu X, Wu Y 2015 Sci. Rep-UK 5 12755Google Scholar

    [7]

    Beiersdorfer P, Clementson J, Safronova U 2015 Int. J. Radiat. Oncol. 3 587

    [8]

    Rieth M, Dudarev S L, Gonzalez de Vicente S M, Aktaa J, Ahlgren T, Antusch S, Armstrong D E J, Balden M, Baluc N, Barthe M F, Basuki W W, Battabyal M, Becquart C S, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia J B, de Backer A, Domain C, Gaganidze E, García-Rosales C, Gibson J, Gilbert M R, Giusepponi S, Gludovatz B, Greuner H, Heinola K, Höschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, López-Ruiz P, Maier H, Matejicek J, Mishra T P, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts S G, Romaner L, Rosiński M, Sanchez M, Schulmeyer W, Traxler H, Ureña A, van der Laan J G, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar M A, You J H, Zivelonghi A 2013 Journal of Nuclear Materials 432 482Google Scholar

    [9]

    Neu R, Hopf C, Kallenbach A, Pütterich T, Dux R, Greuner H, Gruber O, Herrmann A, Krieger K, Materials H M J J O N 2007 J. Nucl. Mater. 367/358/369/370 1497

    [10]

    张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松 2018 金属学报 54 831Google Scholar

    Zhang T, Yan W, Xie Z M, Miao S, Yang J F, Wang X P, Fang Q F, Liu C S 2018 Acta Metall. Sin. 54 831Google Scholar

    [11]

    Zhe C, Niu L L, Wang Z, Tian L, Wei Q 2018 Acta Mater. 147 100Google Scholar

    [12]

    Lang E, Madden N, Smith C, Krogstad J, Allain J P 2018 Int. J. Refract. Met. & H. 75 279

    [13]

    Zhang Z X, Chen D S, Han W T, Kimura A 2015 Fusion Engineering & Design 98/99 2103

    [14]

    Hu X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D, Katoh Y 2016 Journal of Nuclear Materials 480 235Google Scholar

    [15]

    Chen Z, Niu L L, Wang Z, Tian L, Kecskes L, Zhu K, Wei Q 2018 Acta Materialia 147 100

    [16]

    Merola M, Escourbiac F, Raffray R, Chappuis P, Hirai T, Martin A 2014 Fusion Eng. Des. 89 890Google Scholar

    [17]

    García-Rosales C, López-Ruiz P, Alvarez-Martín S, Calvo A, Ordás N, Koch F, Brinkmann J 2014 Fusion Eng. Des. 89 1611Google Scholar

    [18]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng Mater. 6 299Google Scholar

    [19]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375/376/377 213

    [20]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [21]

    Senkov O N, Miracle D B, Chaput K J, Couzinie J P 2018 J. Mater. Res. 33 3092Google Scholar

    [22]

    王雪姣, 乔珺威, 吴玉程 2020 材料导报 17 1

    Wang X J, Qiao J W, Wu Y C 2020 Mater. Rep. 17 1

    [23]

    Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar

    [24]

    He J Y, Liu W H, Wang H, Wu Y, Liu X J, Nieh T G, Lu Z P 2014 Acta Mater. 62 105Google Scholar

    [25]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [26]

    Guo S, Liu C T 2011 Prog. Nat. Sci-Mater. 21 433Google Scholar

    [27]

    Guo S, Ng C, Lu J, Liu C T 2011 J. AppL. Phys. 109 103505

    [28]

    Yang X, Zhang Y 2012 Mater. Chem. Phys. 132 233Google Scholar

    [29]

    Ren MX, Li B- S, Fu H Z 2013 T. Nonferr. Metal. Soc. 23 991Google Scholar

    [30]

    Zhang Y, Lu Z P, Ma S G, Liaw P K, Tang Z, Cheng Y Q, Gao M C 2014 MRS Commun. 4 57Google Scholar

    [31]

    Gao M C, Carney C S, Doğan Ö N, Jablonksi P D, Hawk J A, Alman D E 2015 JOM 67 2653Google Scholar

    [32]

    Wang Z, Huang Y, Yang Y, Wang J, Liu C T 2015 Scripta Mater. 94 28Google Scholar

    [33]

    King D J M, Middleburgh S C, McGregor A G, Cortie M B 2016 Acta Mater. 104 172Google Scholar

    [34]

    Varma S K, Sanchez F, Ramana C V 2020 J. Mater. Sci. Technol. 53 66Google Scholar

    [35]

    Varma S K, Sanchez F, Moncayo S, Ramana C V 2020 J. Mater. Sci. Technol. 38 189Google Scholar

    [36]

    刘张全, 乔珺威 2019 中国材料进展 38 768

    Liu Z Q, Qiao J W 2019 Mater. Chin. 38 768

    [37]

    Senkov O N, Jensen J K, Pilchak A L, Miracle D B, Fraser H L 2018 Mater. Design 139 498Google Scholar

    [38]

    Guo N N, Wang L, Luo L S, Li X Z, Chen R R, Su Y Q, Guo J J, Fu H Z 2016 Mater. Sci. Eng. A 651 698Google Scholar

    [39]

    Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K 2010 Intermetallics 18 1758Google Scholar

    [40]

    Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698Google Scholar

    [41]

    Maresca F, Curtin W A 2020 Acta Mater. 182 235Google Scholar

    [42]

    Wei S, Kim S J, Kang J, Zhang Y, Zhang Y, Furuhara T, Park E S, Tasan C C 2020 Nat. Mater. 19

    [43]

    Yan J, Li M, Li K, Qiu J, Guo Y 2020 J. Mater. Eng. Perform. 29 2125Google Scholar

    [44]

    Yan D, Song K, Sun H, Wu S, Zhao K, Zhang H, Yuan S, Kim J T, Chawake N, Renk O, Hohenwarter A, Wang L, Eckert J 2020 J. Mater. Eng. Perform. 29 399Google Scholar

    [45]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar

    [46]

    Zou Y, Maiti S, Steurer W, Spolenak R 2014 Acta Mater. 65 85Google Scholar

    [47]

    Yan J, Li K, Wang Y, Qiu J 2019 JOM 71 2489Google Scholar

    [48]

    Long Y, Liang X, Su K, Peng H, Li X 2019 J. Alloy. Compd. 780 607Google Scholar

    [49]

    Alvi S, Akhtar F 2019 Wear 426 412

    [50]

    Xin S W, Zhang M, Yang T T, Zhao Y Y, Sun B R, Shen T D 2018 J. Alloy. Compd. 769 597Google Scholar

    [51]

    Pan J, Dai T, Lu T, Ni X, Dai J, Li M 2018 Mater. Sci. Eng. A 738 362Google Scholar

    [52]

    Xia A, Togni A, Hirn S, Bolelli G, Lusvarghi L, Franz R 2020 Surf. Coat. Tech. 385 125356Google Scholar

    [53]

    Alvi S, Jarzabek D M, Kohan M G, Hedman D, Jenczyk P, Natile M M, Vomiero A, Akhtar F 2020 ACS Appl. Mater. Inter. 12 21070

    [54]

    Kim H, Nam S, Roh A, Son M, Ham M H, Kim J H, Choi H 2019 Int. J. Refract. Met. H. 80 286Google Scholar

    [55]

    El-Atwani O, Li N, Li M, Devaraj A, Baldwin J K S, Schneider M M, Sobieraj D, Wróbel J S, Nguyen-Manh D, Maloy S A 2018 Sci. Adv. 5

    [56]

    Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748Google Scholar

    [57]

    Guo Y, Wang H, Liu Q 2020 J. Alloy. Compd. 834 155147

    [58]

    Guo Y, Liu Q 2018 Intermetallics 102 78Google Scholar

    [59]

    Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M, Sridharan K, Zhang C, Thoma D, Couet A 2020 Mater. Design 187 108358

    [60]

    Feng X, Tang G, Gu L, Ma X, Sun M, Wang L 2012 Appl. Surf. Sci. 261 447

    [61]

    Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, Li T 2015 J. Mater. Eng. Perform. 24 4594

    [62]

    Zhang B, Gao M C, Zhang Y, Guo S M 2015 CALPHAD 51 193

    [63]

    Anzorena M S, Bertolo A A, Gagetti L, Kreiner A J, Mosca H O, Bozzolo G, del Grosso M F 2016 Mater. Design 111 382

    [64]

    Yao H W, Qiao J W, Gao M C, Hawk J A, Ma S G, Zhou H F, Zhang Y 2016 Mat. Sci. Eng. A-STRUCT 674 203Google Scholar

    [65]

    Han Z D, Chen N, Zhao S F, Fan L W, Yang G N, Shao Y, Yao K F 2017 Intermetallics 84 153Google Scholar

    [66]

    Han Z D, Luan H, Liu X, Chen N, Li X Y, Shao Y, Yao K 2017 Mater. Sci. Eng. A 712

    [67]

    Waseem O A, Ryu H J 2017 Sci. Rep-UK 7 1926Google Scholar

    [68]

    Das S, Robi P S, Iop 2018 International Conference on Recent Advances in Materials & Manufacturing Technologies

    [69]

    Zhang W, Liaw P, Zhang Y 2018 Entropy 20

    [70]

    Ikeuchi D, King D J M, Laws K J, Knowles A J, Aughterson R D, Lumpkin G R, Obbard E G 2019 Scripta Mater. 158 141Google Scholar

    [71]

    Ley N A, Segovia S, Gorsse S, Young M L 2019 Metall. Mater. Trans. A 50A 4867

    [72]

    Senkov O N, Rao S I, Butler T M, Chaput K J 2019 J. Alloy. Compd. 808 151685Google Scholar

    [73]

    Takeuchi A, Wada T, Kato H 2019 Mater. Trans. 60 2267Google Scholar

    [74]

    Takeuchi A, Wada T, Kato H 2019 Mater. Trans. 60 1666Google Scholar

    [75]

    Wang H, Liu Q, Guo Y, Lan H 2019 Intermetallics 115 106613Google Scholar

    [76]

    Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar

    [77]

    Patel D, Richardson M D, Jim B, Akhmadaliev S, Goodall R, Gandy A S 2020 J. Nucl. Mater. 531 152005Google Scholar

    [78]

    Xin S W, Shen X, Du C C, Zhao J, Sun B R, Xue H X, Yang T T, Cai X C, Shen T D 2021 J. Nucl. Mater. 853 155995

    [79]

    Hung S B, Wang C J, Chen Y Y, Lee J W, Li C L 2019 Surf. Coat. Tech. 375 802Google Scholar

    [80]

    Malinovskis P, Fritze S, Riekehr L, von Fieandt L, Cedervall J, Rehnlund D, Nyholm L, Lewin E, Jansson U 2018 Mater. Design 149 51Google Scholar

    [81]

    Lee C, Song G, Gao M C, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky J D, Li S, Samaei A T, Chen W, Hu A, Choo H, Liaw P K 2018 Acta Mater. 160 158Google Scholar

    [82]

    Hemphill M A, Yuan T, Wang G Y, Yeh J W, Tsai C W, Chuang A, Liaw P K 2012 Acta Mater. 60 5723Google Scholar

    [83]

    Singh S, Wanderka N, Murty B S, Glatzel U, Banhart J 2011 Acta Mater. 59 182Google Scholar

    [84]

    Li Z, Pradeep K G, Deng Y, Raabe D, Tasan C C 2016 Nature 534 227

    [85]

    Shao L, Zhang T, Li L, Zhao Y, Huang J, Liaw P K, Zhang Y 2018 J. Mater. Eng. Perform. 27 6648Google Scholar

    [86]

    胡赓祥, 蔡珣, 戎咏华 2003 材料科学基础 (上海: 上海交通大学出版社)

    Hu G X, Cai X, Rong Y H 2003 Fundamentals of Materials Science (Beijing: Shanghai Jiao Tong University Press) (in Chinese)

    [87]

    张联盟, 黄学辉, 宋晓岚 2008 材料科学基础 (武汉: 武汉理工大学出版社)

    Zhang L M, Huang X H, Song X L 2008 Fundamentals of Materials Science (Wuhan: Wuhan Li Gong University Press) (in Chinese)

    [88]

    Callister W D, Rethwisch D G 2014 Materials Science and Engineering (United States of America: Wiley)

    [89]

    Gao M C, Yeh J W, Liaw P K, Zhang Y 2016 High Entropy Alloys Fundamentals and Applications (New York: Springer Press)

    [90]

    Zhou R, Chen G, Liu B, Wang J, Han L, Liu Y 2018 Int. J. Refract. Met. H. 75 56Google Scholar

    [91]

    Ye Y X, Liu C Z, Wang H, Nieh T G 2018 Acta Mater. 147 78Google Scholar

    [92]

    Poulia A, Georgatis E, Lekatou A, Karantzalis A E 2016 Int. J. Refract. Met. H. 57 50Google Scholar

    [93]

    Hsu C Y, Sheu T S, Yeh J W, Chen S K 2010 Wear 268 653Google Scholar

    [94]

    Wang Y, Yang Y, Yang H, Zhang M, Qiao J 2017 J. Alloy. Compd. 725 365Google Scholar

    [95]

    Liu Y, Ma S, Gao M C, Zhang C, Zhang T, Yang H, Wang Z, Qiao J 2016 Metall. Mater Trans. A 47 3312Google Scholar

    [96]

    Yadav S, Kumar A, Biswas K 2018 Mater. Chem. Phys. 210 222Google Scholar

    [97]

    Zhang A, Han J, Su B, Meng J 2017 J. Alloy. Compd. 725 700Google Scholar

    [98]

    Gorban’ V F, Krapivka N A, Karpets M V, Kostenko A D, Samelyuk A N, Kantsyr E V 2017 J. Frict. Wear 38 292Google Scholar

    [99]

    Poulia A, Georgatis E, Lekatou A, Karantzalis A 2017 Adv. Eng. Mater. 1 9

    [100]

    Shu W M, Luo G N, Yamanishi T 2007 J. Nucl. Mater. 367/368/369/370 1463

    [101]

    Nishijima D, Ye M Y, Ohno N, Takamura S 2003 J. Nucl. Mater. 313/314/315/316 97

    [102]

    Nagata S, Tsuchiya B, Sugawara T, Ohtsu N, Shikama T 2002 J. Nucl. Mater. 307/308/309/310/311 1513

    [103]

    Nishijima D, Ye M Y, Ohno N, Takamura S 2004 J. Nucl. Mater. 329/330/331/332/333 1029

    [104]

    Takamura S, Ohno N, Nishijima D, Kajita S 2006 Plasma Fusion Res. 1 051Google Scholar

    [105]

    Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L M, Djurabekova F, Weber W J, Zhang Y 2016 Phys. Rev. Lett. 116 135504Google Scholar

    [106]

    El-Atwani O, Hinks J A, Greaves G, Allain J P, Maloy S A 2017 Mater. Res. Lett. 5 343Google Scholar

    [107]

    El-Atwani O, Esquivel E, Efe M, Aydogan E, Wang Y Q, Martinez E, Maloy S A 2018 Acta Mater. 149 206Google Scholar

    [108]

    Vetterick G A, Gruber J, Suri P K, Baldwin J K, Kirk M A, Baldo P, Wang Y Q, Misra A, Tucker G J, Taheri M L 2017 Sci. Rep-UK 7 12275Google Scholar

    [109]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S G 2016 Acta Mater. 112 105Google Scholar

    [110]

    Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D, Kurtz R J 2015 J. Nucl. Mater. 462 329Google Scholar

    [111]

    Cai W, Li Y, Dowding R, Mohamed F, Lavernia E 1995 Rev. Particul. Mater. 3 71

    [112]

    Wiley J 1994 Dynamic Behavior of Materials ppi-xviii

    [113]

    Arfsten D P, Still K R, Ritchie G D 2001 Toxicol Ind Health 17 180Google Scholar

    [114]

    Magness L S 1994 Mechan. Mater. 17 147Google Scholar

    [115]

    Kim D K, Lee S, Hyung Baek W 1998 Mater. Sci. Eng. A 249 197Google Scholar

    [116]

    陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏 2020 力学学报 52 1443Google Scholar

    Chen H H, ZHang X F, Xiong W, Liu C, Wei H Y, Wang H Y, Dai L H 2020 Chin. J. Theor. Appl. Mec. 52 1443Google Scholar

    [117]

    Tang Z, Huang L, He W, Liaw P 2014 Entropy 16 895Google Scholar

    [118]

    Jayaraj J, Thinaharan C, Ningshen S, Mallika C, Kamachi Mudali U 2017 Intermetallics 89 123Google Scholar

    [119]

    Wang S, Xu J 2016 Mater. Sci. Eng. C 73

  • 图 1  强度与温度的关系[41]

    Fig. 1.  The relationship between strength and temperature[41].

    图 2  NbMoTaWHEAs薄膜的制备与表征[56]

    Fig. 2.  Fabrication and characterization of NbMoTaW HEA films[56].

    图 3  增材制造示意图[59]

    Fig. 3.  Schematic illustration of additive manufacturing[59].

    图 4  NbMoTaW和VNbMoTaW的SEM背散射图像[39]

    Fig. 4.  SEM backscatter electron images of a polished coss-section of NbMoTaW and VNbMoTaW[39].

    图 5  室温工程应力应变曲线[40,51]

    Fig. 5.  Compressive engineering stress-strain curves at room temperature[40,51].

    图 6  CuMoTaWV难熔HEAs纳米柱及其工程应力应变曲线[53]

    Fig. 6.  Nanopillar of CuMoTaWV: (a, b) before and (c) after the compression test, and (d) stress-strain plot from nanocompression[53].

    图 7  合金屈服强度与温度的关系[40]

    Fig. 7.  The temperature dependence of the yield stress of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 HEAs and two superalloys, Inconel 718 and Haynes 230[40].

    图 8  不同的工艺参数和基底制备MoFeCrTiWAlNbHEAs涂层的结果[58]

    Fig. 8.  Wear volume loss of HEA coatings fabricated by laser cladding with various processing parameters and substrate after sliding time for 15 min[58].

    图 9  相应图表的结构以及两种合金在每个滑动距离和所使用的计数器体的磨损率值 (a) 滑动距离400 m; (b) 滑动距离1000 m; (c) 滑动距离2000 m [99]

    Fig. 9.  Comparative diagrams of the volume loss (left) and the wear rate (right) of Mo20Ta20W20Nb20V20 versus Inconel 718, tested with both an alumina and a steel ball for sliding distances of (a) 400 m, (b) 1000 m, and (c) 2000 m, respectively[99].

    图 10  在1073 K下1–MeV Kr+2原位辐照HEAs的TEM明场显微图[55]

    Fig. 10.  Bright-field TEM micrographs as a function of dpa of in situ 1–MeV Kr+2-irradiated HEA at 1073 K using a dpa rate of 0.0016 dpa/s: (A) Pre-irradiation; (B) 0.2 dpa; (C) 0.6 dpa; (D) 1.0 dpa; (E) 1.6 dpa; (F) 3.2 dpa; (G) 4.8 dpa; (H) 6.4 dpa; (I) 8 dpa[55].

    图 11  合金准静态与动态下的真实应力应变曲线和在高速冲击下的侵彻性能[76]

    Fig. 11.  The true compressive stress-strain curve of the alloy under quasi-static and dynamic conditions and its penetration performance under high-speed impact[76].

    图 12  (CrNbTaTiW)C薄膜和不锈钢参考材料的动电位极化曲线[80]

    Fig. 12.  Potential polarization curve of (CrNbTaTiW)C film and stainless steel[80].

    表 1  近年来一些典型钨HEAs的相组成

    Table 1.  Phase composition of some typical Tungsten high entropy alloys in recent years.

    年份合金条件文献
    2010NbMoTaWACBCC[39]
    2010VNbMoTaWACBCC[39]
    2012Ti-Nb-Ta-WMSBCC[60]
    2015CrFeNiV0.5W0.25ACFCC+$ \sigma $[61]
    2015CrFeNiV0.5W0.5ACBCC+FCC+$ \sigma $[61]
    2015CrFeNiV0.5W0.75ACBCC+FCC+$ \sigma $[61]
    2015CrFeNiV0.5WACBCC+FCC+$ \sigma $[61]
    2015CrFeNi2V0.5W0.25ACFCC+$ \sigma $[61]
    2015CrFeNi2V0.5W0.5ACFCC+$ \sigma $[61]
    2015CrFeNi2V0.5W0.75ACBCC+FCC+$ \sigma $[61]
    2015CrFeNi2V0.5WACBCC+FCC+$ \sigma $[61]
    2015Cr0.5VNbMoTaWACBCC[62]
    2015CrVNbMoTaWACBCC[62]
    2015Cr2VNbMoTaWACBCC[62]
    2016VZrMoTaWAC(+A)BCC+ BCC+HCP+Laves[63]
    2016VNbTaWACBCC[64]
    2016TiVNbTaWACBCC[64]
    2017TiNbMoTaWACBCC[65]
    2017TiVNbMoTaWACBCC[65]
    2017TixNbMoTaW (x = 0–1)ACBCC[66]
    2017TiVCrTaWxMA+SPSBCC[67]
    2018VCrMoTaWMABCC[68]
    2018V11Cr15Ta36W38MSBCC[55]
    2018AlTiCrFeNbMoWLCBCC+IM[58]
    2018Ti8Nb23Mo23Ta23W23MA+SPSBCC+Carbide[51]
    2018VCrFeTaxWx (x = 0.1, 0.2)ACBCC[69]
    2018VCrFeTaxWx (x = 0.3)ACBCC1+BCC2[69]
    2018VCrFeTaxWx (x = 0.4, 1)ACBCC1+BCC2+Laves[69]
    2018VNbMoTaWMA+HPHTBCC[50]
    2019VCuMoTaWMABCC[49,53]
    2019V26.4Cr31.3Mo23.6W18.7ACBCC[70]
    2019TiNiNbTaWACBCC+$ \mu $[71]
    2019Al10Ti18Ni18Nb18Ta18W18ACBCC+$ \mu $+L21[71]
    2019VCrNbMoTaWMA+SPSBCC+Laves[48]
    2019Ti34.4Nb32.9Mo17W15.7ACBCC[72]
    2019Mo-Ru-Rh­W-IrACBCC+HCP+FCC[73,74]
    2019AlTiCrFe1.5NbxMoW (x = 1.5–3)LCBCC+MC+Laves[75]
    2019TiCrNbMoWMA+SPSBCC+Laves[47]
    2020FeNiMoWACFCC+BCC+$ \mu $[76]
    2020V2.5Cr1.2Co0.04MoWACBCC[77]
    2020NbMoReTaWTaAC+ABCC[44]
    2020(TiNbMoW)100–xCrx (x = 5–20)MA+SPSBCC+Laves[43]
    2020(VNbMoTaW)99B1MA+HPHTBCC[78]
    AC = 铸造, MS = 磁控溅射, A = 热处理, MA = 球磨, SPS = 放电等离子烧结, LC = 激光熔覆, HPHT = 高压/高压固结技术
    下载: 导出CSV
    Baidu
  • [1]

    Knaster J, Moeslang A, Muroga T 2016 Nat. Phys. 12 424Google Scholar

    [2]

    Phillips N W, Yu H, Das S, Yang D, Mizohata K, Liu W, Xu R, Harder R J, Hofmann F 2020 Acta Mater. 195 219Google Scholar

    [3]

    Gilbert M R, Dudarev S L, Zheng S, Packer L W, Sublet J C 2012 Nucl. Fusion 52 083019

    [4]

    马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波 2019 68 040702Google Scholar

    Ma Y T, Liu J B, Han L, Tian L F, Wang X C, Meng X M, Xiao S Q, Wang B 2019 Acta Phys. Sin. 68 040702Google Scholar

    [5]

    郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 65 077803Google Scholar

    Guo H Y, Xia M, Yan Q Z, Guo L P, Chen J H, Ge C C 2016 Acta Phys. Sin. 65 077803Google Scholar

    [6]

    Tan X, Luo L, Chen H, Zhu X, Wu Y 2015 Sci. Rep-UK 5 12755Google Scholar

    [7]

    Beiersdorfer P, Clementson J, Safronova U 2015 Int. J. Radiat. Oncol. 3 587

    [8]

    Rieth M, Dudarev S L, Gonzalez de Vicente S M, Aktaa J, Ahlgren T, Antusch S, Armstrong D E J, Balden M, Baluc N, Barthe M F, Basuki W W, Battabyal M, Becquart C S, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia J B, de Backer A, Domain C, Gaganidze E, García-Rosales C, Gibson J, Gilbert M R, Giusepponi S, Gludovatz B, Greuner H, Heinola K, Höschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, López-Ruiz P, Maier H, Matejicek J, Mishra T P, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts S G, Romaner L, Rosiński M, Sanchez M, Schulmeyer W, Traxler H, Ureña A, van der Laan J G, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar M A, You J H, Zivelonghi A 2013 Journal of Nuclear Materials 432 482Google Scholar

    [9]

    Neu R, Hopf C, Kallenbach A, Pütterich T, Dux R, Greuner H, Gruber O, Herrmann A, Krieger K, Materials H M J J O N 2007 J. Nucl. Mater. 367/358/369/370 1497

    [10]

    张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松 2018 金属学报 54 831Google Scholar

    Zhang T, Yan W, Xie Z M, Miao S, Yang J F, Wang X P, Fang Q F, Liu C S 2018 Acta Metall. Sin. 54 831Google Scholar

    [11]

    Zhe C, Niu L L, Wang Z, Tian L, Wei Q 2018 Acta Mater. 147 100Google Scholar

    [12]

    Lang E, Madden N, Smith C, Krogstad J, Allain J P 2018 Int. J. Refract. Met. & H. 75 279

    [13]

    Zhang Z X, Chen D S, Han W T, Kimura A 2015 Fusion Engineering & Design 98/99 2103

    [14]

    Hu X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D, Katoh Y 2016 Journal of Nuclear Materials 480 235Google Scholar

    [15]

    Chen Z, Niu L L, Wang Z, Tian L, Kecskes L, Zhu K, Wei Q 2018 Acta Materialia 147 100

    [16]

    Merola M, Escourbiac F, Raffray R, Chappuis P, Hirai T, Martin A 2014 Fusion Eng. Des. 89 890Google Scholar

    [17]

    García-Rosales C, López-Ruiz P, Alvarez-Martín S, Calvo A, Ordás N, Koch F, Brinkmann J 2014 Fusion Eng. Des. 89 1611Google Scholar

    [18]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng Mater. 6 299Google Scholar

    [19]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375/376/377 213

    [20]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [21]

    Senkov O N, Miracle D B, Chaput K J, Couzinie J P 2018 J. Mater. Res. 33 3092Google Scholar

    [22]

    王雪姣, 乔珺威, 吴玉程 2020 材料导报 17 1

    Wang X J, Qiao J W, Wu Y C 2020 Mater. Rep. 17 1

    [23]

    Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar

    [24]

    He J Y, Liu W H, Wang H, Wu Y, Liu X J, Nieh T G, Lu Z P 2014 Acta Mater. 62 105Google Scholar

    [25]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [26]

    Guo S, Liu C T 2011 Prog. Nat. Sci-Mater. 21 433Google Scholar

    [27]

    Guo S, Ng C, Lu J, Liu C T 2011 J. AppL. Phys. 109 103505

    [28]

    Yang X, Zhang Y 2012 Mater. Chem. Phys. 132 233Google Scholar

    [29]

    Ren MX, Li B- S, Fu H Z 2013 T. Nonferr. Metal. Soc. 23 991Google Scholar

    [30]

    Zhang Y, Lu Z P, Ma S G, Liaw P K, Tang Z, Cheng Y Q, Gao M C 2014 MRS Commun. 4 57Google Scholar

    [31]

    Gao M C, Carney C S, Doğan Ö N, Jablonksi P D, Hawk J A, Alman D E 2015 JOM 67 2653Google Scholar

    [32]

    Wang Z, Huang Y, Yang Y, Wang J, Liu C T 2015 Scripta Mater. 94 28Google Scholar

    [33]

    King D J M, Middleburgh S C, McGregor A G, Cortie M B 2016 Acta Mater. 104 172Google Scholar

    [34]

    Varma S K, Sanchez F, Ramana C V 2020 J. Mater. Sci. Technol. 53 66Google Scholar

    [35]

    Varma S K, Sanchez F, Moncayo S, Ramana C V 2020 J. Mater. Sci. Technol. 38 189Google Scholar

    [36]

    刘张全, 乔珺威 2019 中国材料进展 38 768

    Liu Z Q, Qiao J W 2019 Mater. Chin. 38 768

    [37]

    Senkov O N, Jensen J K, Pilchak A L, Miracle D B, Fraser H L 2018 Mater. Design 139 498Google Scholar

    [38]

    Guo N N, Wang L, Luo L S, Li X Z, Chen R R, Su Y Q, Guo J J, Fu H Z 2016 Mater. Sci. Eng. A 651 698Google Scholar

    [39]

    Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K 2010 Intermetallics 18 1758Google Scholar

    [40]

    Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698Google Scholar

    [41]

    Maresca F, Curtin W A 2020 Acta Mater. 182 235Google Scholar

    [42]

    Wei S, Kim S J, Kang J, Zhang Y, Zhang Y, Furuhara T, Park E S, Tasan C C 2020 Nat. Mater. 19

    [43]

    Yan J, Li M, Li K, Qiu J, Guo Y 2020 J. Mater. Eng. Perform. 29 2125Google Scholar

    [44]

    Yan D, Song K, Sun H, Wu S, Zhao K, Zhang H, Yuan S, Kim J T, Chawake N, Renk O, Hohenwarter A, Wang L, Eckert J 2020 J. Mater. Eng. Perform. 29 399Google Scholar

    [45]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar

    [46]

    Zou Y, Maiti S, Steurer W, Spolenak R 2014 Acta Mater. 65 85Google Scholar

    [47]

    Yan J, Li K, Wang Y, Qiu J 2019 JOM 71 2489Google Scholar

    [48]

    Long Y, Liang X, Su K, Peng H, Li X 2019 J. Alloy. Compd. 780 607Google Scholar

    [49]

    Alvi S, Akhtar F 2019 Wear 426 412

    [50]

    Xin S W, Zhang M, Yang T T, Zhao Y Y, Sun B R, Shen T D 2018 J. Alloy. Compd. 769 597Google Scholar

    [51]

    Pan J, Dai T, Lu T, Ni X, Dai J, Li M 2018 Mater. Sci. Eng. A 738 362Google Scholar

    [52]

    Xia A, Togni A, Hirn S, Bolelli G, Lusvarghi L, Franz R 2020 Surf. Coat. Tech. 385 125356Google Scholar

    [53]

    Alvi S, Jarzabek D M, Kohan M G, Hedman D, Jenczyk P, Natile M M, Vomiero A, Akhtar F 2020 ACS Appl. Mater. Inter. 12 21070

    [54]

    Kim H, Nam S, Roh A, Son M, Ham M H, Kim J H, Choi H 2019 Int. J. Refract. Met. H. 80 286Google Scholar

    [55]

    El-Atwani O, Li N, Li M, Devaraj A, Baldwin J K S, Schneider M M, Sobieraj D, Wróbel J S, Nguyen-Manh D, Maloy S A 2018 Sci. Adv. 5

    [56]

    Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748Google Scholar

    [57]

    Guo Y, Wang H, Liu Q 2020 J. Alloy. Compd. 834 155147

    [58]

    Guo Y, Liu Q 2018 Intermetallics 102 78Google Scholar

    [59]

    Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M, Sridharan K, Zhang C, Thoma D, Couet A 2020 Mater. Design 187 108358

    [60]

    Feng X, Tang G, Gu L, Ma X, Sun M, Wang L 2012 Appl. Surf. Sci. 261 447

    [61]

    Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, Li T 2015 J. Mater. Eng. Perform. 24 4594

    [62]

    Zhang B, Gao M C, Zhang Y, Guo S M 2015 CALPHAD 51 193

    [63]

    Anzorena M S, Bertolo A A, Gagetti L, Kreiner A J, Mosca H O, Bozzolo G, del Grosso M F 2016 Mater. Design 111 382

    [64]

    Yao H W, Qiao J W, Gao M C, Hawk J A, Ma S G, Zhou H F, Zhang Y 2016 Mat. Sci. Eng. A-STRUCT 674 203Google Scholar

    [65]

    Han Z D, Chen N, Zhao S F, Fan L W, Yang G N, Shao Y, Yao K F 2017 Intermetallics 84 153Google Scholar

    [66]

    Han Z D, Luan H, Liu X, Chen N, Li X Y, Shao Y, Yao K 2017 Mater. Sci. Eng. A 712

    [67]

    Waseem O A, Ryu H J 2017 Sci. Rep-UK 7 1926Google Scholar

    [68]

    Das S, Robi P S, Iop 2018 International Conference on Recent Advances in Materials & Manufacturing Technologies

    [69]

    Zhang W, Liaw P, Zhang Y 2018 Entropy 20

    [70]

    Ikeuchi D, King D J M, Laws K J, Knowles A J, Aughterson R D, Lumpkin G R, Obbard E G 2019 Scripta Mater. 158 141Google Scholar

    [71]

    Ley N A, Segovia S, Gorsse S, Young M L 2019 Metall. Mater. Trans. A 50A 4867

    [72]

    Senkov O N, Rao S I, Butler T M, Chaput K J 2019 J. Alloy. Compd. 808 151685Google Scholar

    [73]

    Takeuchi A, Wada T, Kato H 2019 Mater. Trans. 60 2267Google Scholar

    [74]

    Takeuchi A, Wada T, Kato H 2019 Mater. Trans. 60 1666Google Scholar

    [75]

    Wang H, Liu Q, Guo Y, Lan H 2019 Intermetallics 115 106613Google Scholar

    [76]

    Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar

    [77]

    Patel D, Richardson M D, Jim B, Akhmadaliev S, Goodall R, Gandy A S 2020 J. Nucl. Mater. 531 152005Google Scholar

    [78]

    Xin S W, Shen X, Du C C, Zhao J, Sun B R, Xue H X, Yang T T, Cai X C, Shen T D 2021 J. Nucl. Mater. 853 155995

    [79]

    Hung S B, Wang C J, Chen Y Y, Lee J W, Li C L 2019 Surf. Coat. Tech. 375 802Google Scholar

    [80]

    Malinovskis P, Fritze S, Riekehr L, von Fieandt L, Cedervall J, Rehnlund D, Nyholm L, Lewin E, Jansson U 2018 Mater. Design 149 51Google Scholar

    [81]

    Lee C, Song G, Gao M C, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky J D, Li S, Samaei A T, Chen W, Hu A, Choo H, Liaw P K 2018 Acta Mater. 160 158Google Scholar

    [82]

    Hemphill M A, Yuan T, Wang G Y, Yeh J W, Tsai C W, Chuang A, Liaw P K 2012 Acta Mater. 60 5723Google Scholar

    [83]

    Singh S, Wanderka N, Murty B S, Glatzel U, Banhart J 2011 Acta Mater. 59 182Google Scholar

    [84]

    Li Z, Pradeep K G, Deng Y, Raabe D, Tasan C C 2016 Nature 534 227

    [85]

    Shao L, Zhang T, Li L, Zhao Y, Huang J, Liaw P K, Zhang Y 2018 J. Mater. Eng. Perform. 27 6648Google Scholar

    [86]

    胡赓祥, 蔡珣, 戎咏华 2003 材料科学基础 (上海: 上海交通大学出版社)

    Hu G X, Cai X, Rong Y H 2003 Fundamentals of Materials Science (Beijing: Shanghai Jiao Tong University Press) (in Chinese)

    [87]

    张联盟, 黄学辉, 宋晓岚 2008 材料科学基础 (武汉: 武汉理工大学出版社)

    Zhang L M, Huang X H, Song X L 2008 Fundamentals of Materials Science (Wuhan: Wuhan Li Gong University Press) (in Chinese)

    [88]

    Callister W D, Rethwisch D G 2014 Materials Science and Engineering (United States of America: Wiley)

    [89]

    Gao M C, Yeh J W, Liaw P K, Zhang Y 2016 High Entropy Alloys Fundamentals and Applications (New York: Springer Press)

    [90]

    Zhou R, Chen G, Liu B, Wang J, Han L, Liu Y 2018 Int. J. Refract. Met. H. 75 56Google Scholar

    [91]

    Ye Y X, Liu C Z, Wang H, Nieh T G 2018 Acta Mater. 147 78Google Scholar

    [92]

    Poulia A, Georgatis E, Lekatou A, Karantzalis A E 2016 Int. J. Refract. Met. H. 57 50Google Scholar

    [93]

    Hsu C Y, Sheu T S, Yeh J W, Chen S K 2010 Wear 268 653Google Scholar

    [94]

    Wang Y, Yang Y, Yang H, Zhang M, Qiao J 2017 J. Alloy. Compd. 725 365Google Scholar

    [95]

    Liu Y, Ma S, Gao M C, Zhang C, Zhang T, Yang H, Wang Z, Qiao J 2016 Metall. Mater Trans. A 47 3312Google Scholar

    [96]

    Yadav S, Kumar A, Biswas K 2018 Mater. Chem. Phys. 210 222Google Scholar

    [97]

    Zhang A, Han J, Su B, Meng J 2017 J. Alloy. Compd. 725 700Google Scholar

    [98]

    Gorban’ V F, Krapivka N A, Karpets M V, Kostenko A D, Samelyuk A N, Kantsyr E V 2017 J. Frict. Wear 38 292Google Scholar

    [99]

    Poulia A, Georgatis E, Lekatou A, Karantzalis A 2017 Adv. Eng. Mater. 1 9

    [100]

    Shu W M, Luo G N, Yamanishi T 2007 J. Nucl. Mater. 367/368/369/370 1463

    [101]

    Nishijima D, Ye M Y, Ohno N, Takamura S 2003 J. Nucl. Mater. 313/314/315/316 97

    [102]

    Nagata S, Tsuchiya B, Sugawara T, Ohtsu N, Shikama T 2002 J. Nucl. Mater. 307/308/309/310/311 1513

    [103]

    Nishijima D, Ye M Y, Ohno N, Takamura S 2004 J. Nucl. Mater. 329/330/331/332/333 1029

    [104]

    Takamura S, Ohno N, Nishijima D, Kajita S 2006 Plasma Fusion Res. 1 051Google Scholar

    [105]

    Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L M, Djurabekova F, Weber W J, Zhang Y 2016 Phys. Rev. Lett. 116 135504Google Scholar

    [106]

    El-Atwani O, Hinks J A, Greaves G, Allain J P, Maloy S A 2017 Mater. Res. Lett. 5 343Google Scholar

    [107]

    El-Atwani O, Esquivel E, Efe M, Aydogan E, Wang Y Q, Martinez E, Maloy S A 2018 Acta Mater. 149 206Google Scholar

    [108]

    Vetterick G A, Gruber J, Suri P K, Baldwin J K, Kirk M A, Baldo P, Wang Y Q, Misra A, Tucker G J, Taheri M L 2017 Sci. Rep-UK 7 12275Google Scholar

    [109]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S G 2016 Acta Mater. 112 105Google Scholar

    [110]

    Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D, Kurtz R J 2015 J. Nucl. Mater. 462 329Google Scholar

    [111]

    Cai W, Li Y, Dowding R, Mohamed F, Lavernia E 1995 Rev. Particul. Mater. 3 71

    [112]

    Wiley J 1994 Dynamic Behavior of Materials ppi-xviii

    [113]

    Arfsten D P, Still K R, Ritchie G D 2001 Toxicol Ind Health 17 180Google Scholar

    [114]

    Magness L S 1994 Mechan. Mater. 17 147Google Scholar

    [115]

    Kim D K, Lee S, Hyung Baek W 1998 Mater. Sci. Eng. A 249 197Google Scholar

    [116]

    陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏 2020 力学学报 52 1443Google Scholar

    Chen H H, ZHang X F, Xiong W, Liu C, Wei H Y, Wang H Y, Dai L H 2020 Chin. J. Theor. Appl. Mec. 52 1443Google Scholar

    [117]

    Tang Z, Huang L, He W, Liaw P 2014 Entropy 16 895Google Scholar

    [118]

    Jayaraj J, Thinaharan C, Ningshen S, Mallika C, Kamachi Mudali U 2017 Intermetallics 89 123Google Scholar

    [119]

    Wang S, Xu J 2016 Mater. Sci. Eng. C 73

  • [1] 祁超, 马玉田, 齐艳飞, 肖善曲, 王波. 微观组织对叠片结构钨基面向等离子体材料的热疲劳效应的影响.  , 2024, 73(11): 112801. doi: 10.7498/aps.73.20240007
    [2] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现.  , 2023, 72(23): 237401. doi: 10.7498/aps.72.20231341
    [3] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度.  , 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [4] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理.  , 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [5] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析.  , 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [6] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究.  , 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [7] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [8] 周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. 磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计.  , 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [9] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [10] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [11] 贺玮迪, 张培源, 刘翔, 田雪芬, 付馨葛, 邓爱红. 用正电子湮没技术研究H/He中性束辐照钨钾合金中缺陷的演化.  , 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [12] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟.  , 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [13] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟.  , 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [14] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响.  , 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [15] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究.  , 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [16] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响.  , 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [17] 翟东, 韦昭, 冯志芳, 邵晓红, 张平. 铜钨合金高温高压性质的第一性原理研究.  , 2014, 63(20): 206501. doi: 10.7498/aps.63.206501
    [18] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究.  , 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [19] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究.  , 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [20] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究.  , 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
计量
  • 文章访问数:  11479
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 修回日期:  2020-12-21
  • 上网日期:  2021-05-12
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map