Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shock plasticity design of brittle material

Jiang Tai-Long Yu Yin Huan Qiang Li Yong-Qiang He Hong-Liang

Citation:

Shock plasticity design of brittle material

Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The mechanical properties of a material are closely related to its internal micro-structure. Enhancing shock plasticity by designing appropriate micro-structure will help to slow down or delay shock failure of brittle material. In this paper, we put forward a method of designing and improving shock plasticity of brittle material by implanting specific micro-voids. A lattice-spring model is adopted, which can represent mechanical properties of brittle materials quantitatively. Simulations reveal how the arrangement modes of micro-voids can affect the shock response of brittle material. By implanting randomly arranged voids, porous brittle material has significantly higher shock plasticity than dense brittle material and the design of the regular arrangement mode of voids will help to enhance the shock plasticity further. The dominant mechanism corresponding to the void collapse in the shocked brittle material is shear slip caused by shear stress concentration, which features the occurrence of shear cracks around the voids. Features of mesoscopic deformation in the sample with 5% porosity indicate that the shock plasticity of porous brittle material comes from the volume shrinkage deformation caused by void collapse and the slippage and rotation deformation caused by extension of shear cracks. The inter-permeation of voids and volume shrinkage deformation play a leading role in the sample with regularly arranged voids. While the shear cracks extends over long distance, slippage and rotation deformation take place dominantly in the sample with randomly arranged voids. The two samples with different arrangement modes of voids both have three stages of response in the Hugoniot stress-strain curves in this paper, i. e., linear elasticity stage, collapse deformation stage, and slippage and rotation deformation stage. The sample with higher porosity has a higher shock plasticity than the sample with lower porosity. When the samples have the same porosity, the collapse deformation stage makes greater contribution to the overall shock plasticity if voids are regularly arranged, while the slippage and rotation deformation stage make greater contribution to the overall shock plasticity if the voids are randomly arranged. The principle of enhancing shock plasticity of brittle material by arranging voids regularly in this paper provides physical knowledge for the designing and preparing new types of brittle materials, thereby helping to prevent the function failure induced by shock in brittle material.
      Corresponding author: Li Yong-Qiang, yqli@mail.neu.edu.cn;honglianghe@caep.cn ; He Hong-Liang, yqli@mail.neu.edu.cn;honglianghe@caep.cn
    • Funds: Project supported by the National Key Laboratory of Shock Wave and Detonation Physics of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 9140C670301120C67248, 9140C670302140C67284) and the National Natural Science Foundation of China (Grant No. 11272164).
    [1]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [2]

    Bourne N, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [3]

    Grady D E 1998 Mech. Mater. 29 181

    [4]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [5]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [6]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [7]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [8]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [9]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [10]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [11]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [12]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [13]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [15]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102(in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 63 246102]

    [16]

    Schaedler T A, Jacobsen A J, Torrents A, Sorensen A E, Lian J, Greer J R, Valdevit L, Carter W B 2011 Science 334 962

    [17]

    Zheng X Y, Lee H, Weisgraber T H, Shusteff M, de Otte J, Duoss E B, Kuntz J D, Biener M M, Ge Q, Jackson J A, Kucheyev S O, Fang N X, Spadaccini C M 2014 Science 344 1373

    [18]

    Meza L R, Das S, Greer J R 2014 Science 345 1322

    [19]

    Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O 2014 PNAS 111 2453

    [20]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [21]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103(in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [22]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4-5 (in Chinese) [罗恩B 著(龚江宏译) 2010 脆性固体断裂力学(北京: 高等教育出版社)第4–5页]

    [23]

    Erhart P, Bringa E M, Kumar M, Albe K 2005 Phys. Rev. B 72 052104

    [24]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S, Becker R, Kumar M 2005 Appl. Phys. Lett. 86 161902

    [25]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [26]

    Makarov P V, Schmauder S, Cherepanov O I, Smolin I Y, Romanova V A, Balokhonov R R, Saraev D Y, Soppa E, Kizler P, Fischer G, Hu S, Ludwig M 2001 Theor. Appl. Fract. Mech. 37 183

    [27]

    Wu Q, Jing F Q 1995 Appl. Phys. Lett. 67 49

    [28]

    Herrmann W 1969 J. Appl. Phys. 40 2490

    [29]

    Caëroll M M, Holt A C 1972 J. Appl. Phys. 43 1626

  • [1]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [2]

    Bourne N, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [3]

    Grady D E 1998 Mech. Mater. 29 181

    [4]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [5]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [6]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [7]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [8]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [9]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [10]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [11]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [12]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [13]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [15]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102(in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 63 246102]

    [16]

    Schaedler T A, Jacobsen A J, Torrents A, Sorensen A E, Lian J, Greer J R, Valdevit L, Carter W B 2011 Science 334 962

    [17]

    Zheng X Y, Lee H, Weisgraber T H, Shusteff M, de Otte J, Duoss E B, Kuntz J D, Biener M M, Ge Q, Jackson J A, Kucheyev S O, Fang N X, Spadaccini C M 2014 Science 344 1373

    [18]

    Meza L R, Das S, Greer J R 2014 Science 345 1322

    [19]

    Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O 2014 PNAS 111 2453

    [20]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [21]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103(in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [22]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4-5 (in Chinese) [罗恩B 著(龚江宏译) 2010 脆性固体断裂力学(北京: 高等教育出版社)第4–5页]

    [23]

    Erhart P, Bringa E M, Kumar M, Albe K 2005 Phys. Rev. B 72 052104

    [24]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S, Becker R, Kumar M 2005 Appl. Phys. Lett. 86 161902

    [25]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [26]

    Makarov P V, Schmauder S, Cherepanov O I, Smolin I Y, Romanova V A, Balokhonov R R, Saraev D Y, Soppa E, Kizler P, Fischer G, Hu S, Ludwig M 2001 Theor. Appl. Fract. Mech. 37 183

    [27]

    Wu Q, Jing F Q 1995 Appl. Phys. Lett. 67 49

    [28]

    Herrmann W 1969 J. Appl. Phys. 40 2490

    [29]

    Caëroll M M, Holt A C 1972 J. Appl. Phys. 43 1626

  • [1] Wen Peng,  Tao Gang. Molecular dynamics study of the effect of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [2] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [3] Li Yuan, Deng Han-Bin, Wang Cui-Xiang, Li Shuai-Shuai, Liu Li-Min, Zhu Chang-Jiang, Jia Ke, Sun Ying-Kai, Du Xin, Yu Xin, Guan Tong, Wu Rui, Zhang Shu-Yuan, Shi You-Guo, Mao Han-Qing. Surface and electronic structure of antiferromagnetic axion insulator candidate EuIn2As2. Acta Physica Sinica, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [4] Chen Xing, Ma Gang, Zhou Wei, Lai Guo-Wei, Lai Zhi-Qiang. Effects of material disorder on impact fragmentation of brittle spheres. Acta Physica Sinica, 2018, 67(14): 146102. doi: 10.7498/aps.67.20180276
    [5] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. The ability of porous brittle materials to absorb and withstand high energy density pulse. Acta Physica Sinica, 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [6] Diwu Min-Jie, Hu Xiao-Mian. Plastic deformation in nanoporous aluminum subjected to high-rate uniaxial compression. Acta Physica Sinica, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [7] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. Shock response and evolution mechanism of brittle material containing micro-voids. Acta Physica Sinica, 2014, 63(24): 246102. doi: 10.7498/aps.63.246102
    [8] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [9] Deng Xiao-Liang, Zhu Wen-Jun, Song Zhen-Fei, He Hong-Liang, Jing Fu-Qian. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [10] Wang Hai-Yan, Zhu Wen-Jun, Deng Xiao-Liang, Song Zhen-Fei, Chen Xiang-Rong. Plastic deformation of helium bubble and void in aluminum under shock loading. Acta Physica Sinica, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [11] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [12] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Study of nucleation of void-induced phase transformation under shock compression. Acta Physica Sinica, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [13] An Xing-Tao, Li Yu-Xian, Liu Jian-Jun. Noise in mesoscopic physics. Acta Physica Sinica, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [14] Chen Deng-Ping, He Hong-Liang, Li Ming-Fa, Jing Fu-Qian. A delayed failure of inhomogenous brittle material under shock wave compression. Acta Physica Sinica, 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [15] Zhou Xiao-Fang. The complete solution of zero-state response in mesoscopic LC circuit. Acta Physica Sinica, 2007, 56(10): 6019-6022. doi: 10.7498/aps.56.6019
    [16] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [17] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] WANG JI-SUO, HAN BAO-CUN, SUN CHANG-YONG. QUANTUM FLUCTUATIONS IN MESOSCOPIC CAPACITANCE COUPLED CIRCUITS. Acta Physica Sinica, 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [19] CHEN BIN, LI YOU-QUAN, SHA JIAN, ZHANG QI-RUI. QUANTUM EFFECTS OF CHARGE IN-THE MESOSCOPIC CIRCUIT. Acta Physica Sinica, 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [20] Gao Shou-En, Chen Bin, Jiao Zheng-Kuan. . Acta Physica Sinica, 1995, 44(9): 1480-1483. doi: 10.7498/aps.44.1480
Metrics
  • Abstract views:  5828
  • PDF Downloads:  246
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2015
  • Accepted Date:  31 March 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map