搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能

伯乐 高小余 宁志良 王力 孙剑飞 张振江 黄永江

引用本文:
Citation:

电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能

伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江

Optimizing microstructure and mechanical properties of CoCrFeNi high-entropy alloy microfibers by electric current treatment

BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高熵合金纤维因其优异的力学性能和稳定性, 在高科技领域具有广阔的应用前景. 然而, 该类材料强塑性不匹配的问题制约了其进一步应用, 虽然热处理可以进一步优化其力学性能, 但传统热处理方法对时间和能源的消耗较高, 且难以精准调控材料的组织, 易导致晶粒粗化. 本文采用电流处理技术调制微米级(直径~70 μm)冷拔态CoCrFeNi高熵合金纤维的性能, 采用电子背散射衍射、透射电子显微镜以及同步辐射等技术探讨了电流处理过程中的热效应与非热效应对材料组织结构和力学性能的影响, 建立了CoCrFeNi纤维再结晶形核和长大模型. 相比于传统热处理, 电流处理过程中电子风力和焦耳热效应的协同作用显著加快再结晶过程, 获得更细小且均匀的晶粒, 并有效降低位错密度, 进而获得更优异的力学性能. 电流处理可获得屈服强度为400—2033 MPa的纤维, 延伸率最高可达53%. 本文证实, 电流处理可作为优化高熵合金纤维组织结构及性能的有效手段, 为高性能金属纤维的制备及工程化应用提供理论支撑和工艺指导.
    High-entropy alloy (HEA) microfibers exhibit promising prospects in microscale high-tech applications due to their exceptional mechanical properties and stability. However, the strength-plasticity tradeoff largely hinders their further industrial applications. Heat treatment can optimize the mechanical properties of HEA microfibers. However,the traditional heat treatment (CHT) faces challenges in accurately adjusting the microstructures in a short period of time, while also being prone to grain coarsening, which can affect performance. In this study, an electric current treatment (ECT) technique is used to finely modulate the properties of cold-drawn CoCrFeNi high-entropy alloy microfibers on a microscale (~70 μm in diameter), the effects of thermal and athermal effects during ECT on microstructure and mechanical properties are systematically investigated through electron back scatter diffraction, transmission electron microscopy, and synchrotron radiation. A model of recrystallization, nucleation and growth of HEA microfibers is established. Compared with CHT, the synergistic effects of electron wind force and Joule heating during ECT significantly accelerate recrystallization kinetics, yielding finer and more homogeneous grains with a great decrease in dislocation density, and finally lead to better mechanical properties. The ECT-processed HEA microfibers achieve a yield strength in a range from 400 to 2033 MPa and a tensile elongation reaching 53%, which are much higher than those of CHT samples. These results demonstrate that the ECT is effective for optimizing the microstructure and properties of HEA microfibers, and can also provide both a theoretical foundation and technical guidance for fabricating high-performance metallic microfibers.
  • 图 1  不同电流密度电流处理CoCrFeNi高熵合金纤维的的IPF图和KAM图 (a), (a1) ECT120; (b), (b1) ECT140; (c), (c1) ECT160; (d), (d1) ECT180; (e), (e1) ECT200

    Fig. 1.  EBSD images of electric current treated CoCrFeNi HEA microfibers with various current densities: (a), (a1) ECT120; (b), (b1) ECT140; (c), (c1) ECT160; (d), (d1) ECT180; (e), (e1) ECT200.

    图 2  不同热效应温度处理高熵合金纤维的IPF图和KAM图 (a), (a1) CHT747; (b), (b1) CHT850; (c), (c1) CHT943; (d), (d1) CHT1013; (e), (e1) CHT1075

    Fig. 2.  EBSD images of HEA microfibers with different thermal effect temperatures: (a), (a1) CHT747; (b), (b1) CHT850; (c), (c1) CHT943; (d), (d1) CHT1013; (e), (e1) CHT1075.

    图 3  (a) ECT和(b) CHT处理的高熵合金纤维的高能X射线衍射图谱; (c) 高能X射线衍射图谱中得到的相应位错密度

    Fig. 3.  High energy X-ray diffraction (HEXRD) patterns of the microfibers processed under different (a) ECT and (b) CHT conditions; (c) corresponding dislocation density from the HEXRD patterns.

    图 4  不同处理方式得到的CoCrFeNi纤维的工程应力应变曲线 (a)不同电流密度电流处理; (b)不同温度退火处理

    Fig. 4.  Engineering tensile stress-strain curves of CoCrFeNi microfibers treated with different methods: (a) Different current densities for ECT; (b) different temperatures for CHT.

    图 5  ECT100和CHT623高熵合金纤维TEM图像(a), (b) ECT100纤维的TEM明场像; (c), (d) CHT623纤维的TEM明场像及对应的选区电子衍射斑点

    Fig. 5.  TEM images of ECT100 and CHT623 HEA microfibers: (a), (b) TEM bright field images of ECT100 microfibers; (c), (d) TEM bright field images and corresponding selected area electron diffraction pattern of CHT623 microfibers.

    图 6  ECT120和CHT747高熵合金纤维TEM图像(a), (b) ECT120纤维的TEM明场图像; (c), (d) CHT747纤维的TEM明场图像

    Fig. 6.  TEM images of ECT120 and CHT747 HEA microfibers: (a), (b) TEM bright field images of ECT120 microfibers; (c), (d) TEM bright field images of CHT747 microfibers.

    图 7  电流处理对CoCrFeNi高熵合金纤维再结晶的作用机制示意图 (a)冷拔态; (b)再结晶形核(位错重排); (c)部分再结晶; (d)完全再结晶

    Fig. 7.  Schematic diagram of the mechanism of electric current treatment on CoCrFeNi HEA microfiber recrystallization: (a) Cold drawn; (b) recrystallized nucleation (dislocation rearrangement); (c) partial recrystallization; (d) complete recrystallization.

    表 1  实验设计方案

    Table 1.  Experimental design scheme.

    电流密度
    /(A·mm–2)
    标记稳定温度/K传统热处理
    温度/K
    标记
    100ECT100623623CHT623
    120ECT120747747CHT747
    140ECT140850850CHT850
    160ECT160943943CHT943
    180ECT18010131013CHT1013
    200ECT20010751075CHT1075
    下载: 导出CSV

    表 2  电流处理和热处理样品的平均晶粒尺寸

    Table 2.  Average grain size of samples subjected to ECT and CHT.

    样品晶粒尺寸/μm样品晶粒尺寸/μm
    ECT100CHT623
    ECT1201.5±0.2CHT7471.3±0.1
    ECT1401.9±0.2CHT8501.7±0.2
    ECT1602.5±0.7CHT9433.1±0.6
    ECT1804.6±1.1CHT10135.8±1.3
    ECT20015.0±3.1CHT107516.8±4.0
    下载: 导出CSV

    表 3  不同电流处理和退火处理工艺得到的高熵合金纤维的屈服强度和均匀延伸率

    Table 3.  Yield strength and uniform elongation of electric current treated microfibers with various current densities and heat treated microfibers with various temperatures.

    样品屈服强度/
    MPa
    均匀延伸率/
    %
    样品屈服强度/
    MPa
    均匀延伸率/
    %
    As drawn19300
    ECT10020330CHT62316800
    ECT12014807CHT74714900
    ECT140113043CHT85010503
    ECT16080052CHT94371513.5
    ECT18055039CHT101350041
    ECT20040019CHT107536028
    下载: 导出CSV
    Baidu
  • [1]

    陈金玺, 徐彬, 戴兰宏, 陈艳 2024 科学通报 69 3154Google Scholar

    Chen J X, Xu B, Dai L H, Chen Y 2024 Chin. Sci. Bull. 69 3154Google Scholar

    [2]

    高裕昆, 赵洁, 周晶晶, 周静 2025 74 057701Google Scholar

    Gao Y K, Zhao J, Zhou J J, Zhou J 2025 Acta Phys. Sinica 74 057701Google Scholar

    [3]

    Zhang Y F, Wu K K, Shen S N, Zhang Q Y, Cao W, Liu S 2023 J. Micromech. Microeng. 33 025002Google Scholar

    [4]

    You J M, Kim H, Kim J, Kwon D S 2021 IEEE Rob. Autom. Lett. 6 7357Google Scholar

    [5]

    Abbas M, Eom H S, Byun J Y, Shin D, Kim S H 2023 J. Cleaner Prod. 418 138044Google Scholar

    [6]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471Google Scholar

    [7]

    Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295Google Scholar

    [8]

    Tong Y, Chen D, Han B, Wang J, Feng R, Yang T, Zhao C, Zhao Y L, Guo W, Shimizu Y, Liu C T, Liaw P K, Inoue K, Nagai Y, Hu A, Kai J J 2019 Acta Mater. 165 228Google Scholar

    [9]

    Wang K Y, Cheng Z J, Liu C Y, Yu H P, Ning Z L, Ramasamy P, Eckert J, Sun J F, Huang Y J, Zhang Y M, Ngan A H W 2025 Int. J. Plast. 189 104321Google Scholar

    [10]

    Wang K Y, Cheng Z J, Ning Z L, Yu H P, Ramasamy P, Eckert J, Sun J F, Ngan A H W, Huang Y J. 2025 Rare Metals 44 1332Google Scholar

    [11]

    Li D Y, Li C X, Feng T, Zhang Y D, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285Google Scholar

    [12]

    Ma X G, Chen J, Wang X H, Xu Y J, Xue Y J 2019 J. Alloys Compd. 795 45Google Scholar

    [13]

    Liu J P, Chen J X, Liu T W, Li C, Chen Y, Dai L H 2020 Scr. Mater. 181 19Google Scholar

    [14]

    Chen J X, Chen Y, Liu J P, Liu T W, Dai L H 2021 Scr. Mater. 199 113897Google Scholar

    [15]

    Gao X Y, Liu J, Fu W J, Huang Y J, Ning Z L, Zhang Z, Sun J F, Chen W 2023 Mater. Des. 233 112250Google Scholar

    [16]

    Zhou S C, Dai C D, Hou H X, Lu Y P, Liaw P K, Zhang Y 2023 Scr. Mater 226 115234Google Scholar

    [17]

    Deng L, Li R X, Luo J R, Li S L, Xie X F, Wu S S, Zhang W R, Liaw P K, Korznikova E A, Zhang Y 2024 Int. J. Plast. 175 103929Google Scholar

    [18]

    Liu X L, Wu Y D, Zheng B Y, Bai R, Gao L, Dong Z, Song C Q, Yu Y, Gao P, Hui X D 2024 Small 20 2403371Google Scholar

    [19]

    Yan K, Sun J P, Bai J, Liu H, Huang X, Jin Z Y, Wu Y N 2019 Mater. Sci. Eng. , A 739 513Google Scholar

    [20]

    Bo L, Gao X Y, Song W J, Ning Z L, Sun J F, Ngan A H W, Huang Y J 2025 Int. J. Plast. 188 104307Google Scholar

    [21]

    Kustra P, Milenin A, Byrska-Wójcik D, Grydin O, Schaper M 2017 J. Mater. Process. Technol. 247 234Google Scholar

    [22]

    陆子川, 姜风春, 侯红亮, 刘郢, 程玉洁, 果春焕 2015 塑性工程学报 22 117Google Scholar

    Lu Z C, Jiang F C, Hou H L, Liu Y, Cheng Y J, Guo C H 2015 J. Plast. Eng. 22 117Google Scholar

    [23]

    Jeong K, Jin S W, Kang S G, Park J W, Jeong H J, Hong S T, Cho S H, Kim M J, Han H N 2022 Acta Mater. 232 117925Google Scholar

    [24]

    Wu Z C, Xu X F, Zhao Y, Yan X D, Zhou Y C, Wei L, Yu Y Q 2023 Mater. Sci. Eng. , A 863 144536Google Scholar

    [25]

    Li M Q, Shen Y D, Luo K, An Q, Gao P, Xiao P H, Zou Y 2023 Nat. Mater. 22 958Google Scholar

    [26]

    Gao X Y, Liu J, Bo L, Chen W, Sun J F, Ning Z L, Ngan W, Huang Y J 2024 Acta Mater. 277 120203Google Scholar

    [27]

    Liu Y F, Ren J, Guan S, Li C Y, Zhang Y, Muskeri S, Liu Z Y, Yu D J, Chen Y, An K, Cao Y, Liu W, Zhu Y T, Chen W, Mukherjee S, Zhu T, Chen W 2023 Acta Mater. 250 118884Google Scholar

    [28]

    HajyAkbary F, Sietsma J, Bottger A J, Santofimia M J 2015 Mater. Sci. Eng. A 639 208Google Scholar

    [29]

    李亦庄, 黄明欣 2020 金属学报 56 487Google Scholar

    Li Y Z, Huang M X 2020 Acta Metall. Sin. 56 487Google Scholar

    [30]

    Yang B, Motz C, Rester M, Dehm G 2012 Philos. Mag. 92 3243Google Scholar

    [31]

    Peng S Y, Tian Y Z, Ni Z Y, Lu S, Li S 2024 Int. J. Plast. 182 104129Google Scholar

    [32]

    Liu M W, Gong W, Zheng R X, Li J, Zhang Z, Gao S, Ma C L, Tsuji N 2022 Acta Mater. 226 117629Google Scholar

    [33]

    Ben D D, Yang H J, Dong Y A, Tian Y Z, Sun S J, Meng L X, Duan Q Q, Zhang P, Zhang Z F 2023 Mater. Charact. 195 112557Google Scholar

    [34]

    秦荣山, 周本濂 1997 材料研究学报 69

    Qin R S, Zhou B L 1997 Chin. J. Mater. Res. 69

    [35]

    Zhang W, Sui M L, Zhou Y Z, Zhong Y, Li D X 2002 Adv. Eng. Mater. 4 697Google Scholar

    [36]

    Liu Y, Fan J F, Zhang H, Jin W, Dong H B, Xu B S 2015 J. Alloys Compd. 622 229Google Scholar

    [37]

    Zhang X, Li H W, Shao G D, Gao J, Zhan M 2022 J. Alloys Compd. 898 162762Google Scholar

    [38]

    Li X, Zhu Q, Hong Y R, Zheng H, Wang J, Wang J W, Zhang Z 2022 Nat. Commun. 13 6503Google Scholar

    [39]

    Cao W D, Sprecher A F, Conrad H 1989 J. Phys. Sci. Instrum. E 22 1026Google Scholar

  • [1] 吴昊, 王旭, 王建元, 翟薇, 魏炳波. 三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能.  , doi: 10.7498/aps.74.20250657
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , doi: 10.7498/aps.71.20220733
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , doi: 10.7498/aps.71.20221621
    [4] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟.  , doi: 10.7498/aps.70.20210324
    [5] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能.  , doi: 10.7498/aps.70.20201986
    [6] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响.  , doi: 10.7498/aps.69.20191671
    [7] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质.  , doi: 10.7498/aps.66.146101
    [8] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能.  , doi: 10.7498/aps.66.196101
    [9] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响.  , doi: 10.7498/aps.65.077101
    [10] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能.  , doi: 10.7498/aps.63.136801
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , doi: 10.7498/aps.62.036801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究.  , doi: 10.7498/aps.62.076202
    [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构.  , doi: 10.7498/aps.61.167101
    [14] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究.  , doi: 10.7498/aps.60.086802
    [15] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响.  , doi: 10.7498/aps.60.066201
    [16] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能.  , doi: 10.7498/aps.58.216
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , doi: 10.7498/aps.56.6118
    [18] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能.  , doi: 10.7498/aps.54.4846
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究.  , doi: 10.7498/aps.54.1665
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响.  , doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  252
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-05-09
  • 上网日期:  2025-05-29

/

返回文章
返回
Baidu
map