Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shock response and evolution mechanism of brittle material containing micro-voids

Yu Yin He Hong-Liang Wang Wen-Qiang Lu Tie-Cheng

Citation:

Shock response and evolution mechanism of brittle material containing micro-voids

Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Micro-voids significantly affect shock responses of brittle materials. Knowledge about the meso-scale evolution mechanism and macro-scale shock behavior will help to utilize micro-void in applications and avoid its disadvantages. A lattice-spring model, which can represent both elastic property and fracture evolution accurately, is built in this work. Simulations reveal that severe stress relaxation, which is contributed from collapse deformation induced by voids and slippage deformation induced by shear cracks extending from voids, modulates the propagation of shock wave. In a porous brittle material, the shock wave broadens into an elastic wave and a deformation wave. On a macro-scale, the deformation wave behaves as a plastic wave in ductile metal; on a meso-scale, it corresponds to the processes of collapse and slippage deformations. It is found that porosity of the sample determines the Hugoniot elastic limit of material; whereas the porosity and shock stress affect the propagation speed of the deformation wave and stress amplitude in a final state of shock. Brittle materials containing micro-voids have potential applications in complex shock loading experiments, precaution of shock induced function failure, and crashworthiness of buildings. Shock behaviors reported in this work will benefit the design and optimization of shock responses and dynamic mechanical properties of brittle materials used in specific applications.
    • Funds: Project supported by the National Key Laboratory of Shock Wave and Detonation Physics of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. 9140C670301120C67248), and the National Natural Science Foundation of China (Grant No. 11272164).
    [1]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [2]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [3]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [4]

    Herring S D, Germann T C, Grönbech-Jensen N 2010 Phys. Rev. B 82 214108

    [5]

    Mang J T, Hjelm R P, Francois E G 2010 Propellants Explos. Pyrotech. 35 7

    [6]

    Swantek A B, Austin J M 2010 J. Fluid Mech. 649 399

    [7]

    Vandersall K S, Tarver C M, Garcia F, Chidester S K 2010 J. Appl. Phys. 107 094906

    [8]

    Zhang F, He H, Liu G, Liu Y, Yu Y, Wang Y 2013 J. Appl. Phys. 113 183501

    [9]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [10]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [11]

    Jiang D, Du J, Gu Y, Feng Y 2012 J. Appl. Phys. 111 104102

    [12]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [13]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 62 226201]

    [14]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [15]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [16]

    Gray III G T 2012 Shock Compression of Condensed Matter-2011 Chicago, USA, June 26-July 1, 2011 p19

    [17]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [18]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [19]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [20]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [21]

    Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawrellak J, Belak J 2006 Nat. Mater. 5 805

    [22]

    Shehadeh M A, Bringa E M, Zbib H M, McNaney J M, Remington B A 2006 Appl. Phys. Lett. 89 171918

    [23]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S 2005 Appl. Phys. Lett. 86 161902

    [24]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul Mater. Sci. Eng. 9 485

    [25]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [26]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [27]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [28]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [29]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [30]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [31]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [32]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4, 5 (in Chinese) [罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第4, 5页]

    [33]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [34]

    Grady D E 1998 Mech. Mater. 29 181

    [35]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [36]

    Setchell R E 2003 J. Appl. Phys. 94 573

  • [1]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [2]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [3]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [4]

    Herring S D, Germann T C, Grönbech-Jensen N 2010 Phys. Rev. B 82 214108

    [5]

    Mang J T, Hjelm R P, Francois E G 2010 Propellants Explos. Pyrotech. 35 7

    [6]

    Swantek A B, Austin J M 2010 J. Fluid Mech. 649 399

    [7]

    Vandersall K S, Tarver C M, Garcia F, Chidester S K 2010 J. Appl. Phys. 107 094906

    [8]

    Zhang F, He H, Liu G, Liu Y, Yu Y, Wang Y 2013 J. Appl. Phys. 113 183501

    [9]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [10]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [11]

    Jiang D, Du J, Gu Y, Feng Y 2012 J. Appl. Phys. 111 104102

    [12]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [13]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 62 226201]

    [14]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [15]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [16]

    Gray III G T 2012 Shock Compression of Condensed Matter-2011 Chicago, USA, June 26-July 1, 2011 p19

    [17]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [18]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [19]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [20]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [21]

    Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawrellak J, Belak J 2006 Nat. Mater. 5 805

    [22]

    Shehadeh M A, Bringa E M, Zbib H M, McNaney J M, Remington B A 2006 Appl. Phys. Lett. 89 171918

    [23]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S 2005 Appl. Phys. Lett. 86 161902

    [24]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul Mater. Sci. Eng. 9 485

    [25]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [26]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [27]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [28]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [29]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [30]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [31]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [32]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4, 5 (in Chinese) [罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第4, 5页]

    [33]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [34]

    Grady D E 1998 Mech. Mater. 29 181

    [35]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [36]

    Setchell R E 2003 J. Appl. Phys. 94 573

  • [1] Wen Peng,  Tao Gang. Molecular dynamics study of the effect of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [2] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [3] He Yan, Zhou Gang, Liu Yan-Xia, Wang Hao, Xu Dong-Sheng, Yang Rui. Atomistic simulation of microvoid formation and its influence on crack nucleation in hexagonal titanium. Acta Physica Sinica, 2018, 67(5): 050203. doi: 10.7498/aps.67.20171670
    [4] Chen Xing, Ma Gang, Zhou Wei, Lai Guo-Wei, Lai Zhi-Qiang. Effects of material disorder on impact fragmentation of brittle spheres. Acta Physica Sinica, 2018, 67(14): 146102. doi: 10.7498/aps.67.20180276
    [5] Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong. Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries. Acta Physica Sinica, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [6] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. The ability of porous brittle materials to absorb and withstand high energy density pulse. Acta Physica Sinica, 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [7] Wang Hong-Ming, Li Pei-Si, Zheng Rui, Li Gui-Rong, Yuan Xue-Ting. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites. Acta Physica Sinica, 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
    [8] Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang. Shock plasticity design of brittle material. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [9] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [10] Yan Guan-Yun, Tian Qiang, Huang Chao-Qiang, Gu Xiao-Min, Sun Guang-Ai, Chen Bo, Huang Ming, Nie Fu-De, Liu Yi, Li Xiu-Hong. A small-angle X-ray scattering study of micro-defects in thermally treated HMX. Acta Physica Sinica, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [11] Wang Hai-Yan, Zhu Wen-Jun, Deng Xiao-Liang, Song Zhen-Fei, Chen Xiang-Rong. Plastic deformation of helium bubble and void in aluminum under shock loading. Acta Physica Sinica, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [12] Deng Xiao-Liang, Zhu Wen-Jun, Song Zhen-Fei, He Hong-Liang, Jing Fu-Qian. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [13] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Study of nucleation of void-induced phase transformation under shock compression. Acta Physica Sinica, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [14] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [15] Chen Deng-Ping, He Hong-Liang, Li Ming-Fa, Jing Fu-Qian. A delayed failure of inhomogenous brittle material under shock wave compression. Acta Physica Sinica, 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [16] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [17] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] Xia Qing-Zhong, Chen Bo, Zeng Gui-Yu, Luo Sun-Huo, Dong Hai-Shan, Rong Li-Xia, Dong Bao-Zhong. Experimental investigation of insensitive explosive C6H6N6O6 by small angle x-ray scattering technique. Acta Physica Sinica, 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [19] FAN XI-JUN, TIAN SHU-FEN, LI JIAN, LIU JIE, BAI CHENG-JIE. TIME EVOLUTION OF ATOMIC RESPONSE AND LIGHT AMPLIFICATION MECHANISM IN AN OPEN I NVERSIONLESS LASING SYSTEM. Acta Physica Sinica, 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [20] WANG YEH-NING, HSU TSIH-ZAN, HAN YEH-LUNG. GRAIN BOUNDARY RELAXATION OF MOLYBDENUM AND THE MECHANISM OF THE EMBRITTLING EFFECT OF INTERSTITIAL IMPURITY ADDITIONS. Acta Physica Sinica, 1966, 22(6): 647-658. doi: 10.7498/aps.22.647
Metrics
  • Abstract views:  6565
  • PDF Downloads:  741
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2014
  • Accepted Date:  29 July 2014
  • Published Online:  05 December 2014

/

返回文章
返回
Baidu
map