Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-generated magnetic field in plasma reconstructed by using inverse Abel transformation in proton radiography

Deng Luan Du Bao Cai Hong-Bo Kang Dong-Guo Zhu Shao-Ping

Citation:

Self-generated magnetic field in plasma reconstructed by using inverse Abel transformation in proton radiography

Deng Luan, Du Bao, Cai Hong-Bo, Kang Dong-Guo, Zhu Shao-Ping
PDF
HTML
Get Citation
  • The magnetic fields generated in plasmas have extensive influences on many processes of the inertial confinement fusion and the astrophysics. Therefore, the quantitative diagnosis of the magnetic field is quite essential. Proton radiography is a widely used experimental technique to diagnose the electric field or magnetic field in high-energy-density plasma. The effective explanation of the results of proton radiography depends on the reliability and availability of the inversion method. Traditional inversion methods can only provide one- or two-dimensional structure of the self-generated magnetic field. In this study, it is found that there is an Abel transformation relationship between the deflection velocity and the magnetic field with column symmetry, which allows us to reconstruct the three-dimensional structure of the magnetic field for the first time. We theoretically deduce the process of reconstructing the cylindrical magnetic field through proton radiography with the Abel inversion algorithm. The feasibility of this method is verified by numerical simulation as well. Based on this inversion method, we reanalyze the proton radiography experimental results of Li et al. (2016 Nat. Commun. 7 13081) on the self-generated magnetic field of plasma jets. The inversion results show that the maximum magnetic field intensity is about 1.9 times the traditional inversion results. We discuss a new proton radiography inversion method for the existence of magnetic fields with cylindrical symmetry in thiswork, which will contributes to an intensive understanding of the self-generated electromagnetic field and its spatiotemporal evolution related to the laser fusion and the laboratory astrophysics.
      Corresponding author: Du Bao, dubao89@mail.ustc.edu.cn ; Cai Hong-Bo, cai_hongbo@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975055) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12105023).
    [1]

    Rygg J R, Seguin F H, Li C K, Frenje J A, Manuel M J, Petrasso R D, Betti R, Delettrez J A, Gotchev O V, Knauer J P, Meyerhofer D D, Marshall F J, Stoeckl C, Theobald W 2008 Science 319 1223Google Scholar

    [2]

    Campbell P T, Walsh C A, Russell B K, Chittenden J P, Crilly A, Fiksel G, Nilson P M, Thomas A G R, Krushelnick K, Willingale L 2020 Phys. Rev. Lett. 125 145001Google Scholar

    [3]

    Li C K, Tzeferacos P, Lamb D, Gregori G, Norreys P A, Rosenberg M J, Follett R K, Froula D H, Koenig M, Seguin F H, Frenje J A, Rinderknecht H G, Sio H, Zylstra A B, Petrasso R D, Amendt P A, Park H S, Remington B A, Ryutov D D, Wilks S C, Betti R, Frank A, Hu S X, Sangster T C, Hartigan P, Drake R P, Kuranz C C, Lebedev S V, Woolsey N C 2016 Nat. Commun. 7 13081Google Scholar

    [4]

    Fiuza F, Fonseca R A, Tonge J, Mori W B, Silva L O 2012 Phys. Rev. Lett. 108 235004Google Scholar

    [5]

    Caprioli D, Spitkovsky A 2013 Astrophys. J. 765 20Google Scholar

    [6]

    Haines 1986 Can. J. Phys. 64 912Google Scholar

    [7]

    Fox W, Matteucci J, Moissard C, Schaeffer D B, Bhattacharjee A, Germaschewski K, Hu S X 2018 Phys. Plasmas 25 102106Google Scholar

    [8]

    Honda M 2000 Phys. Rev. Lett. 85 2128Google Scholar

    [9]

    Jia Q, Cai H B, Wang W W, Zhu S P, Sheng Z M, He X T 2013 Phys. Plasmas 20 032113Google Scholar

    [10]

    Courtois C, Ash A D, Chambers D M, Grundy R A D, Woolsey N C 2005 J. Appl. Phys. 98 054913Google Scholar

    [11]

    Kaluza M C, Schlenvoigt H P, Mangles S P, Thomas A G, Dangor A E, Schwoerer H, Mori W B, Najmudin Z, Krushelnick K M 2010 Phys. Rev. Lett. 105 115002Google Scholar

    [12]

    Wang W, Cai H, Teng J, Chen J, He S, Shan L, Lu F, Wu Y, Zhang B, Hong W, Bi B, Zhang F, Liu D, Xue F, Li B, Liu H, He W, Jiao J, Dong K, Zhang F, He Y, Cui B, Xie N, Yuan Z, Tian C, Wang X, Zhou K, Deng Z, Zhang Z, Zhou W, Cao L, Zhang B, Zhu S, He X, Gu Y 2018 Phys. Plasmas 25 083111Google Scholar

    [13]

    Borghesi M 2001 Plasma Phys. Control. Fusion 43 A267Google Scholar

    [14]

    Borghesi M, Schiavi A, Campbell D H, Haines M G, Willi O, Mackinnon A J, Patel P, Galimberti M, Gizzi L A 2003 Rev. Sci. Instrum. 74 1688Google Scholar

    [15]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar

    [16]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [17]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar

    [18]

    滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋 2013 62 114103Google Scholar

    Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103Google Scholar

    [19]

    Séguin F H, Li C K, Manuel M J E, Rinderknecht H G, Sinenian N, Frenje J A, Rygg J R, Hicks D G, Petrasso R D, Delettrez J, Betti R, Marshall F J, Smalyuk V A 2012 Phys. Plasmas 19 012701Google Scholar

    [20]

    杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 68 185205Google Scholar

    Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar

    [21]

    Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, Kugland N L, Kuranz C C, Levy M C, Li C K, Meinecke J, Morita T, Petrasso R, Plechaty C, Remington B A, Ryutov D D, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2015 Nat. Phys. 11 173Google Scholar

    [22]

    Zhou S Y, Bai Y F, Tian Y, Sun H Y, Cao L H, Liu J S 2018 Phys. Rev. Lett. 121 255002Google Scholar

    [23]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [24]

    Gao L, Nilson P M, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [25]

    Tzeferacos P, Rigby A, Bott A F A, Bell A R, Bingham R, Casner A, Cattaneo F, Churazov E M, Emig J, Fiuza F, Forest C B, Foster J, Graziani C, Katz J, Koenig M, Li C K, Meinecke J, Petrasso R, Park H S, Remington B A, Ross J S, Ryu D, Ryutov D, White T G, Reville B, Miniati F, Schekochihin A A, Lamb D Q, Froula D H, Gregori G 2018 Nat. Commun. 9 591Google Scholar

    [26]

    Bott A F A, Graziani C, Tzeferacos P, White T G, Lamb D Q, Gregori G, Schekochihin A A 2017 J. Plasma Phys. 83 905830614Google Scholar

    [27]

    Li X F, Huang L, Huang Y 2007 Journal of Physics A:Mathematical and Theoretical 40 347Google Scholar

    [28]

    Zhang C J, Hua J F, Xu X L, Li F, Pai C H, Wan Y, Wu Y P, Gu Y Q, Mori W B, Joshi C, Lu A W 2016 Sci. Rep. 6 29485Google Scholar

    [29]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [30]

    Du B, Cai H B, Zhang W S, Wang X F, Kang D G, Deng L, Zhang E H, Yao P L, Yan X X, Zou S Y, Zhu S P 2021 Matter Radiat. at Extremes 6 035903Google Scholar

    [31]

    Chen L, Li R Z, Chen J, Zhu P F, Liu F, Cao J M, Sheng Z M, Zhang J 2015 Proc. Natl. Acad. Sci. USA 112 14479Google Scholar

  • 图 1  质子照相示意图

    Figure 1.  Schematic diagram of the proton radiography.

    图 2  (a)预设磁场Bx = 50 μm平面上的分布; (b)探测面上的质子通量密度扰动

    Figure 2.  (a) Distributions of the preset magnetic field at x = 50 μm; (b) the flux density perturbations of the protons in the detection plane.

    图 3  (a)质子偏转速度的反演结果; (b)质子的模拟偏转速度和反演偏转速度在z = 50 μm时的径向分布

    Figure 3.  (a) Reconstruction of the protons deflection velocities; (b) the radial distributions of the protons inversion deflection velocities and simulated deflection velocities at z = 50 μm.

    图 4  (a)反演磁场Brecr-z平面的投影; (b)预设磁场Bset、反演磁场Brec及路径平均磁场Bavg的一维分布

    Figure 4.  (a) Projection of the inversion magnetic field Brec on the r-z plane; (b) the one-dimensional (1D) distributions of the preset magnetic field Bset, the inversion magnetic field Brec and the path average magnetic field Bavg.

    图 5  (a)等离子体喷流的质子照相实验原图[3]; (b)局部的质子通量密度扰动; (c)反演磁场Brec和路径平均磁场Bavg的一维分布

    Figure 5.  (a) Original proton radiographic image of the plasma jet; (b) the flux density perturbations of the protons at the local area; (c) the 1D distributions of the inversion magnetic field Brec and the path average magnetic field Bavg.

    Baidu
  • [1]

    Rygg J R, Seguin F H, Li C K, Frenje J A, Manuel M J, Petrasso R D, Betti R, Delettrez J A, Gotchev O V, Knauer J P, Meyerhofer D D, Marshall F J, Stoeckl C, Theobald W 2008 Science 319 1223Google Scholar

    [2]

    Campbell P T, Walsh C A, Russell B K, Chittenden J P, Crilly A, Fiksel G, Nilson P M, Thomas A G R, Krushelnick K, Willingale L 2020 Phys. Rev. Lett. 125 145001Google Scholar

    [3]

    Li C K, Tzeferacos P, Lamb D, Gregori G, Norreys P A, Rosenberg M J, Follett R K, Froula D H, Koenig M, Seguin F H, Frenje J A, Rinderknecht H G, Sio H, Zylstra A B, Petrasso R D, Amendt P A, Park H S, Remington B A, Ryutov D D, Wilks S C, Betti R, Frank A, Hu S X, Sangster T C, Hartigan P, Drake R P, Kuranz C C, Lebedev S V, Woolsey N C 2016 Nat. Commun. 7 13081Google Scholar

    [4]

    Fiuza F, Fonseca R A, Tonge J, Mori W B, Silva L O 2012 Phys. Rev. Lett. 108 235004Google Scholar

    [5]

    Caprioli D, Spitkovsky A 2013 Astrophys. J. 765 20Google Scholar

    [6]

    Haines 1986 Can. J. Phys. 64 912Google Scholar

    [7]

    Fox W, Matteucci J, Moissard C, Schaeffer D B, Bhattacharjee A, Germaschewski K, Hu S X 2018 Phys. Plasmas 25 102106Google Scholar

    [8]

    Honda M 2000 Phys. Rev. Lett. 85 2128Google Scholar

    [9]

    Jia Q, Cai H B, Wang W W, Zhu S P, Sheng Z M, He X T 2013 Phys. Plasmas 20 032113Google Scholar

    [10]

    Courtois C, Ash A D, Chambers D M, Grundy R A D, Woolsey N C 2005 J. Appl. Phys. 98 054913Google Scholar

    [11]

    Kaluza M C, Schlenvoigt H P, Mangles S P, Thomas A G, Dangor A E, Schwoerer H, Mori W B, Najmudin Z, Krushelnick K M 2010 Phys. Rev. Lett. 105 115002Google Scholar

    [12]

    Wang W, Cai H, Teng J, Chen J, He S, Shan L, Lu F, Wu Y, Zhang B, Hong W, Bi B, Zhang F, Liu D, Xue F, Li B, Liu H, He W, Jiao J, Dong K, Zhang F, He Y, Cui B, Xie N, Yuan Z, Tian C, Wang X, Zhou K, Deng Z, Zhang Z, Zhou W, Cao L, Zhang B, Zhu S, He X, Gu Y 2018 Phys. Plasmas 25 083111Google Scholar

    [13]

    Borghesi M 2001 Plasma Phys. Control. Fusion 43 A267Google Scholar

    [14]

    Borghesi M, Schiavi A, Campbell D H, Haines M G, Willi O, Mackinnon A J, Patel P, Galimberti M, Gizzi L A 2003 Rev. Sci. Instrum. 74 1688Google Scholar

    [15]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar

    [16]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [17]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar

    [18]

    滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋 2013 62 114103Google Scholar

    Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103Google Scholar

    [19]

    Séguin F H, Li C K, Manuel M J E, Rinderknecht H G, Sinenian N, Frenje J A, Rygg J R, Hicks D G, Petrasso R D, Delettrez J, Betti R, Marshall F J, Smalyuk V A 2012 Phys. Plasmas 19 012701Google Scholar

    [20]

    杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 68 185205Google Scholar

    Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar

    [21]

    Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, Kugland N L, Kuranz C C, Levy M C, Li C K, Meinecke J, Morita T, Petrasso R, Plechaty C, Remington B A, Ryutov D D, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2015 Nat. Phys. 11 173Google Scholar

    [22]

    Zhou S Y, Bai Y F, Tian Y, Sun H Y, Cao L H, Liu J S 2018 Phys. Rev. Lett. 121 255002Google Scholar

    [23]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [24]

    Gao L, Nilson P M, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [25]

    Tzeferacos P, Rigby A, Bott A F A, Bell A R, Bingham R, Casner A, Cattaneo F, Churazov E M, Emig J, Fiuza F, Forest C B, Foster J, Graziani C, Katz J, Koenig M, Li C K, Meinecke J, Petrasso R, Park H S, Remington B A, Ross J S, Ryu D, Ryutov D, White T G, Reville B, Miniati F, Schekochihin A A, Lamb D Q, Froula D H, Gregori G 2018 Nat. Commun. 9 591Google Scholar

    [26]

    Bott A F A, Graziani C, Tzeferacos P, White T G, Lamb D Q, Gregori G, Schekochihin A A 2017 J. Plasma Phys. 83 905830614Google Scholar

    [27]

    Li X F, Huang L, Huang Y 2007 Journal of Physics A:Mathematical and Theoretical 40 347Google Scholar

    [28]

    Zhang C J, Hua J F, Xu X L, Li F, Pai C H, Wan Y, Wu Y P, Gu Y Q, Mori W B, Joshi C, Lu A W 2016 Sci. Rep. 6 29485Google Scholar

    [29]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [30]

    Du B, Cai H B, Zhang W S, Wang X F, Kang D G, Deng L, Zhang E H, Yao P L, Yan X X, Zou S Y, Zhu S P 2021 Matter Radiat. at Extremes 6 035903Google Scholar

    [31]

    Chen L, Li R Z, Chen J, Zhu P F, Liu F, Cao J M, Sheng Z M, Zhang J 2015 Proc. Natl. Acad. Sci. USA 112 14479Google Scholar

  • [1] Huang Hua, Li Jiang-Tao, Wang Qian-Nan, Meng Ling-Biao, Qi Wei, Hong Wei, Zhang Zhi-Meng, Zhang Bo, He Shu-Kai, Cui Bo, Wu Yi-Tong, Zhang Hang, Ji Liang-Liang, Zhou Wei-Min, Hu Jian-Bo. Experimental study on the dynamic compression of materials at XGIII facility by laser proton photography. Acta Physica Sinica, 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [2] Chen Feng, Hao Jian-Hong, Xu Hai-Bo. Optimization of proton imaging system including fringe field of magnetic lens. Acta Physica Sinica, 2021, 70(2): 022901. doi: 10.7498/aps.70.20201141
    [3] Zhou Yan-Ling, Fan Jun, Wang Bin. Inversion for acoustic parameters of plastic polymer target in water. Acta Physica Sinica, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [4] Xu Min, Shen Jin, Huang Yu, Xu Ya-Nan, Zhu Xin-Jun, Wang Ya-Jing, Liu Wei, Gao Ming-Liang. Weighting inversion of dynamic light scattering based on particle-size information distribution character. Acta Physica Sinica, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [5] Chen Jie, Zhang Chun-Min, Wang Ding-Yi, Zhang Xing-Ying, Wang Shu-Peng, Li Yan-Fen, Liu Dong-Dong, Rong Piao. Effects of the surface albedo on short-wave infrared detection of atmospheric CO2. Acta Physica Sinica, 2015, 64(23): 239201. doi: 10.7498/aps.64.239201
    [6] Duan Xiao-Liang, Wang Yi-Bo, Yang Hui-Zhu. Regularized seismic velocity inversion based on inverse scattering theory. Acta Physica Sinica, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [7] Li Lun, Wu Xiong-Bin. Multiple sites HFSWR ocean shallow water depth and current inversion. Acta Physica Sinica, 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [8] Li Lun, Wu Xiong-Bin, Xu Xing-An. Optimization method for extracting ocean wave parameters from HFSWR. Acta Physica Sinica, 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [9] Han Yue-Qi, Zhong Zhong, Wang Yun-Feng, Du Hua-Dong. Gradient calculation based ensemble variational method and its application to the inversion of the turbulent coefficient in atmospheric Ekman layer. Acta Physica Sinica, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [10] Teng Jian, Zhu Bin, Wang Jian, Hong Wei, Yan Yong-Hong, Zhao Zong-Qing, Cao Lei-Feng, Gu Yu-Qiu. Simulation of electromagnetic soliton radiography under laser-produced proton beam. Acta Physica Sinica, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [11] Li Hai-Yan, Hu Yun-An, Ren Jian-Cun, Zhu Min, Liu Liang. Neural network-based backstepping design for the synchronization of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Acta Physica Sinica, 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [12] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [13] Dong Jian-Jun, Cao Zhu-Rong, Chen Bo-Lun, Huang Tian-Xuan, Miao Wen-Yong, Zhang Ji-Yan, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun, Gu Yu-Qiu, Shan Lian-Qiang. Study on the spatial distribution of implosion shell based on the inverse Abel transform. Acta Physica Sinica, 2012, 61(11): 115206. doi: 10.7498/aps.61.115206
    [14] Ding Shi-Jing, Ge De-Biao, Shen Ning. Numerical simulation of equivalent electromagnetic parameters of composite material. Acta Physica Sinica, 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [15] Yang Kun-De, Ma Yuan-Liang. A geoacoustic inversion method based on bottom reflection signals. Acta Physica Sinica, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [16] Teng Jian, Hong Wei, Zhao Zong-Qing, Wu Shun-Chao, Qin Xiao-Zun, He Ying-Ling, Gu Yu-Qiu, Ding Yong-Kun. Monte-Carlo study of radiography with laser-produced proton beam. Acta Physica Sinica, 2009, 58(3): 1635-1641. doi: 10.7498/aps.58.1635
    [17] Zhang Hong-Chao, Lu Jian, Ni Xiao-Wu. Experimental diagnosis of electron density of laser induced air plasma by interferometry. Acta Physica Sinica, 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [18] Zhang Xin-Ming, Liu Jia-Qi, Liu Ke-An. Porosity inversion of 1-D two-phase medium with wavelet multiscale method. Acta Physica Sinica, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] Sun Xian-Ming, Ha Heng-Xu. Retrieval of the optical thickness and effective radius of aerosols from reflected solar radiation measurements. Acta Physica Sinica, 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [20] Wei Bing, Ge De-Biao. Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate. Acta Physica Sinica, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
Metrics
  • Abstract views:  4263
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2022
  • Accepted Date:  14 October 2022
  • Available Online:  16 November 2022
  • Published Online:  24 December 2022

/

返回文章
返回
Baidu
map