Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system

Sun Sheng Wang Chao Shi Hao-Dong Fu Qiang Li Ying-Chao

Citation:

Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system

Sun Sheng, Wang Chao, Shi Hao-Dong, Fu Qiang, Li Ying-Chao
PDF
HTML
Get Citation
  • According to the requirements for broadband simultaneous polarization high-resolution imaging, a divided-aperture simultaneous polarization super-resolution imaging system based on reflective free-form surface optical system and digital micro-mirror device is proposed. It has the advantages of wide working wavelength band, simultaneous imaging of multiple polarization states, single detector, high resolution and lightweight. The aberration correction principle and design optimization method of the optical structure for this imaging system are given. The Wassermann-Wolf theory is further developed, and the reflective Wassermann-Wolf differential equations that eliminate a variety of aberrations are derived. At the same time, combined with Seidel aberration theory and using iterative method, the distortion elimination boundary condition is added when solving the Wassermann-Wolf equation. Through the iterative method, the optical initial structure is obtained, which can correct spherical aberration, coma, astigmatism and distortion at the same time. The initial structure is subjected to off-axis treatment and further optimized, and the user-defined optimization evaluation function is written to strictly control the position of the light falling point of each sub aperture and each field of view on the middle image plane and the final image plane, so as to effectively suppress the distortion in the final system and avoid the mismatch error between the mirror element and the pixel in the process of super-resolution reconstruction. The reconstruction quality can be improved. Finally, the design of the four-sub-aperture free-form surface off-axis reflective super-resolution imaging optical system is completed, which possesses a large relative aperture (F# = 2.5) and compact structure. The imaging quality of each polarization channel is close to the diffraction limit. The above aberration correction principle and the image quality optimization method can effectively guide the design of the wide band simultaneous polarization super-resolution imaging optical system.
      Corresponding author: Wang Chao, Nicklo19992009@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805028, 61805027, 61705019, 61701045), the Major Program of the National Natural Science Foundation of China (Grant No. 61890960), and the Open Fund for State Key Laboratory of Applied Optics, China (Grant No. SKLA02020001A11).
    [1]

    聂劲松, 汪震 2006 红外技术 28 63Google Scholar

    Nie J S, Wang Z 2006 Infrared Technol. 28 63Google Scholar

    [2]

    周强国, 黄志明, 周炜 2021 红外技术 43 817

    Zhou Q G, Huang Z M, Zhou W 2021 Infrared Technol. 43 817

    [3]

    尹佳琪 2021 博士学位论文 (上海: 中国科学院上海技术物理研究所)

    Yin J Q 2021 Ph. D. Dissertation (ShangHai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences) (in Chinese)

    [4]

    贾春辉 2019 硕士学位论文 (西安: 西安工业大学)

    Jia C H 2019 M. S. Thesis (Xi’an: Xi’an Technological University) (in Chinese)

    [5]

    Pezzaniti J L, Chenault D B 2005 Conference on Polarization Science and Remote Sensing II San Diego, CA, USA, August 2, 2005 p58880V-1-12

    [6]

    Moultrie S, Roche M, Lompado A Chenault D 2007 Proc. SPIE 6682 66820BGoogle Scholar

    [7]

    Leon E D, Brandt R, Phenis A, Virgen M 2007 Proc. SPIE 6682 668215Google Scholar

    [8]

    贺虎成, 季轶群, 周建康, 赵知诚, 沈为民 2013 光学学报 33 0622005

    He H C, Ji Z Q, Zhou J K, Zhao Z C, Shen W M 2013 Acta Opt. Sin. 33 0622005

    [9]

    王琪, 梁静秋, 梁中翥, 吕金光, 王维彪, 秦余欣, 王洪亮 2018 中国光学 11 92Google Scholar

    Wang Q, Liang J Q, Liang Z Z, Lu J G, Wang W B, Qin Y X, Wang H L 2018 Chin. Opt. 11 92Google Scholar

    [10]

    刘尊辈, 蔡毅, 刘福平, 马俊卉, 张猛蛟, 王岭雪 2021 中国光学 14 1476Google Scholar

    Liu Z B, Cai Y, Liu F P, Ma J B, Zhang M J, Wang L X 2021 Chin. Opt. 14 1476Google Scholar

    [11]

    储君秋 2021 博士学位论文 (成都: 中国科学院光电技术研究所)

    Chu J Q 2021 Ph. D. Dissertation (ChengDu: Institute of Optics and Electronics of Chinese Academy of Sciences) (in Chinese)

    [12]

    王超, 张雅琳, 姜会林, 李英超, 江伦, 付强, 韩龙 2017 激光与红外 47 791Google Scholar

    Wang C, Zhang Y L, Jiang H L, Li Y C, Jiang L, Fu Q, Han L 2017 Laser and Infrared 47 791Google Scholar

    [13]

    李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803Google Scholar

    Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803Google Scholar

    [14]

    孙永强, 胡源, 王月旗, 王祺, 付跃刚 2019 光学学报 39 0311001

    Sun Y Q, Hu Y, Wang Y Q, Wang Q, Fu Y G 2019 Acta Opt. Sin. 39 0311001

    [15]

    袁影, 王晓蕊, 吴雄雄, 穆江浩, 张艳 2017 红外与激光工程 46 0824001

    Yuan Y, Wang X R, Wu X X, Mu J H, Zhang Y 2017 Infrared Laser Eng. 46 0824001

    [16]

    Wassermann G D, Wolf E 1949 Proc. Phys. Soc. London, Sect. B 62 2Google Scholar

    [17]

    徐奉刚, 黄玮, 徐明飞 2016 光学学报 36 238

    Xu F G, Huang W, Xu M F 2016 Acta Opt. Sin. 36 238

    [18]

    陈兴涛, 苏宙平, 张杨柳, 胡立发 2022 光学学报 42 0108001

    Chen X T, Su Z P, Zhang Y L, Hu L F 2022 Acta Opt. Sin. 42 0108001

    [19]

    Kirpatrick S, Gelatt C D, Vecchi M P 1983 Science 220 671Google Scholar

    [20]

    陈杨, 王跃明 2013 光学学报 33 0222003

    Chen Y, Wang Y M 2013 Acta Opt. Sin. 33 0222003

    [21]

    赵宇宸, 何欣, 张凯, 刘强, 崔永鹏, 孟庆宇 2018 红外与激光工程 47 0718004

    Zhao Y H, He X, Zhang K, Liu Q, Cui Y P, Meng Q Y 2018 Infrared Laser Eng. 47 0718004

    [22]

    Zhang B, Jin G, Zhu J 2021 Light Sci. Appl. 10 65Google Scholar

    [23]

    Bauer A, Schiesser E M Rolland J P 2018 Light Sci. Appl. 9 1756Google Scholar

  • 图 1  分孔径离轴同时偏振超分辨率成像系统组成图

    Figure 1.  Composition diagram of aperture-divided off-axis simultaneous polarization super-resolution imaging system.

    图 2  同轴两反W-W模型

    Figure 2.  W-W model of coaxial two-mirror system.

    图 3  中继反射系统初始结构求解流程图

    Figure 3.  Initial structure design flow chart of relay reflection optical system.

    图 4  像面处光线理想落点

    Figure 4.  Ideal light spot at the image plane.

    图 5  分孔径离轴同时偏振超分辨率成像光学系统光路图

    Figure 5.  Layout of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system.

    图 6  DMD微镜处于关状态时光线走向示意

    Figure 6.  Direction of the light when the DMD micro-mirror is off

    图 7  望远物镜MTF曲线图(T代表子午方向, S代表弧矢方向) (a) 子孔径1; (b) 子孔径2; (c) 子孔径3; (d) 子孔径4

    Figure 7.  MTF of Long-range objective: (a) Sub-aperture 1; (b) sub-aperture 2; (c) sub-aperture 3; (d) sub-aperture 4.

    图 13  全系统网格畸变 (a) 子孔径1; (b) 子孔径2; (c) 子孔径3; (d) 子孔径4

    Figure 13.  Grid Distortion: (a) Sub-aperture 1; (b) sub-aperture 2; (c) sub-aperture 3; (d) sub-aperture 4.

    图 8  中继反射系统像质评价 (a) 光路图; (b) MTF; (c) 点列图; (d) 网格畸变

    Figure 8.  Image quality evaluation of relay reflection optical system: (a) Layout; (b) MTF; (c) spot diagram; (d) grid distortion.

    图 9  分孔径离轴同时偏振超分辨率成像光学系统调制传递函数 (a) 子孔径1; (b) 子孔径2; (c) 子孔径3; (d) 子孔径4

    Figure 9.  MTF of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system: (a) Sub-aperture 1; (b) sub-aperture 2; (c) sub-aperture 3; (d) sub-aperture 4.

    图 10  分孔径离轴同时偏振超分辨率成像光学系统光迹分布图 (a) DMD处; (b) 像面处

    Figure 10.  Footprint diagram of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system: (a) At the DMD plane; (b) at the image plane.

    图 11  分孔径离轴同时偏振超分辨率成像光学系统点列图 (a) 子孔径1; (b) 子孔径2; (c) 子孔径3; (d) 子孔径4

    Figure 11.  Spot diagram of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system: (a) Sub-aperture 1; (b) sub-aperture 2; (c) sub-aperture 3; (d) sub-aperture 4.

    图 12  分孔径离轴同时偏振超分辨率成像光学系统光线像差曲线图 (a) 子孔径1; (b) 子孔径2; (c) 子孔径3; (d) 子孔径4

    Figure 12.  Ray aberration of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system: (a) Sub-aperture 1; (b) sub-aperture 2; (c) sub-aperture 3; (d) sub-aperture 4.

    表 1  分孔径离轴同时偏振超分辨率成像光学系统指标

    Table 1.  Specification of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system

    ParameterSpecification
    Effective focal length100 mm
    Entrance pupil diameter40 mm
    Field of view2.70° × 2.00°
    F number2.5
    Wavelength3—14 μm
    MTF> 0.4@20 lp/mm
    Pixel number and size of detector384 × 288; 25 μm
    Pixel number and size of DMD1536 × 1152; 10.8 μm
    DownLoad: CSV

    表 2  次镜和三镜的面形数据点

    Table 2.  Profile data points of M1 and M2.

    Nz1y1z2y2
    1–0.0081262.50.0463.549
    2–0.0183.750.1045.324
    3–0.0264.4990.156.389
    4–0.0737.4970.41510.647
    5–0.1299.9940.73914.195
    ···············
    DownLoad: CSV

    表 3  镜头参数

    Table 3.  Lens parameters

    SurfaceSurface typeRadius/mmThickness/mm
    ObjectiveFree-form surface–301.483–150
    M1Free-form surface–439.79150
    M2Free-form surface180–144.122
    DownLoad: CSV

    表 4  光学系统的公差分配

    Table 4.  Tolerance distribution of optical system.

    公差类型公差名称望远物镜次镜M2三镜M3 公差类型公差名称望远物镜次镜M2三镜M3

    装调公差
    x方向位移/mm
    x 方向倾斜/(′)

    0.08
    1/3
    0.1
    1/2
    加工公差曲率半径/mm0.20.30.3
    y方向位移/mm
    y 方向倾斜/(′)

    0.08
    1/3
    0.08
    1/3
    二次曲面系数0.1%0.07%0.2%
    z方向位移/mm
    z 方向倾斜/(′)

    0.2
    1/4
    0.2
    2/3
    RMS表面误差
    (λ= 632.8 nm)
    λ/50λ/50λ/50
    DownLoad: CSV
    Baidu
  • [1]

    聂劲松, 汪震 2006 红外技术 28 63Google Scholar

    Nie J S, Wang Z 2006 Infrared Technol. 28 63Google Scholar

    [2]

    周强国, 黄志明, 周炜 2021 红外技术 43 817

    Zhou Q G, Huang Z M, Zhou W 2021 Infrared Technol. 43 817

    [3]

    尹佳琪 2021 博士学位论文 (上海: 中国科学院上海技术物理研究所)

    Yin J Q 2021 Ph. D. Dissertation (ShangHai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences) (in Chinese)

    [4]

    贾春辉 2019 硕士学位论文 (西安: 西安工业大学)

    Jia C H 2019 M. S. Thesis (Xi’an: Xi’an Technological University) (in Chinese)

    [5]

    Pezzaniti J L, Chenault D B 2005 Conference on Polarization Science and Remote Sensing II San Diego, CA, USA, August 2, 2005 p58880V-1-12

    [6]

    Moultrie S, Roche M, Lompado A Chenault D 2007 Proc. SPIE 6682 66820BGoogle Scholar

    [7]

    Leon E D, Brandt R, Phenis A, Virgen M 2007 Proc. SPIE 6682 668215Google Scholar

    [8]

    贺虎成, 季轶群, 周建康, 赵知诚, 沈为民 2013 光学学报 33 0622005

    He H C, Ji Z Q, Zhou J K, Zhao Z C, Shen W M 2013 Acta Opt. Sin. 33 0622005

    [9]

    王琪, 梁静秋, 梁中翥, 吕金光, 王维彪, 秦余欣, 王洪亮 2018 中国光学 11 92Google Scholar

    Wang Q, Liang J Q, Liang Z Z, Lu J G, Wang W B, Qin Y X, Wang H L 2018 Chin. Opt. 11 92Google Scholar

    [10]

    刘尊辈, 蔡毅, 刘福平, 马俊卉, 张猛蛟, 王岭雪 2021 中国光学 14 1476Google Scholar

    Liu Z B, Cai Y, Liu F P, Ma J B, Zhang M J, Wang L X 2021 Chin. Opt. 14 1476Google Scholar

    [11]

    储君秋 2021 博士学位论文 (成都: 中国科学院光电技术研究所)

    Chu J Q 2021 Ph. D. Dissertation (ChengDu: Institute of Optics and Electronics of Chinese Academy of Sciences) (in Chinese)

    [12]

    王超, 张雅琳, 姜会林, 李英超, 江伦, 付强, 韩龙 2017 激光与红外 47 791Google Scholar

    Wang C, Zhang Y L, Jiang H L, Li Y C, Jiang L, Fu Q, Han L 2017 Laser and Infrared 47 791Google Scholar

    [13]

    李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803Google Scholar

    Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803Google Scholar

    [14]

    孙永强, 胡源, 王月旗, 王祺, 付跃刚 2019 光学学报 39 0311001

    Sun Y Q, Hu Y, Wang Y Q, Wang Q, Fu Y G 2019 Acta Opt. Sin. 39 0311001

    [15]

    袁影, 王晓蕊, 吴雄雄, 穆江浩, 张艳 2017 红外与激光工程 46 0824001

    Yuan Y, Wang X R, Wu X X, Mu J H, Zhang Y 2017 Infrared Laser Eng. 46 0824001

    [16]

    Wassermann G D, Wolf E 1949 Proc. Phys. Soc. London, Sect. B 62 2Google Scholar

    [17]

    徐奉刚, 黄玮, 徐明飞 2016 光学学报 36 238

    Xu F G, Huang W, Xu M F 2016 Acta Opt. Sin. 36 238

    [18]

    陈兴涛, 苏宙平, 张杨柳, 胡立发 2022 光学学报 42 0108001

    Chen X T, Su Z P, Zhang Y L, Hu L F 2022 Acta Opt. Sin. 42 0108001

    [19]

    Kirpatrick S, Gelatt C D, Vecchi M P 1983 Science 220 671Google Scholar

    [20]

    陈杨, 王跃明 2013 光学学报 33 0222003

    Chen Y, Wang Y M 2013 Acta Opt. Sin. 33 0222003

    [21]

    赵宇宸, 何欣, 张凯, 刘强, 崔永鹏, 孟庆宇 2018 红外与激光工程 47 0718004

    Zhao Y H, He X, Zhang K, Liu Q, Cui Y P, Meng Q Y 2018 Infrared Laser Eng. 47 0718004

    [22]

    Zhang B, Jin G, Zhu J 2021 Light Sci. Appl. 10 65Google Scholar

    [23]

    Bauer A, Schiesser E M Rolland J P 2018 Light Sci. Appl. 9 1756Google Scholar

  • [1] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [2] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [3] Liang Dian-Ming, Wang Chao, Shi Hao-Dong, Liu Zhuang, Fu Qiang, Zhang Su, Zhan Jun-Tong, Yu Yi-Xin, Li Ying-Chao, Jiang Hui-Lin. Aberration correction for ellipsoidal window optical system based on Zernike mode coefficient optimization. Acta Physica Sinica, 2020, 69(24): 244203. doi: 10.7498/aps.69.20200933
    [4] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [5] Yin Yu-Long, Sun Xiao-Bing, Song Mao-Xin, Chen Wei, Chen Fei-Nan. Phase delay error analysis of wave plate of division-of-amplitude full Stokes simultaneous polarization imaging system. Acta Physica Sinica, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [6] Han Ping-Li, Liu Fei, Zhang Guang, Tao Yu, Shao Xiao-Peng. Multi-scale analysis method of underwater polarization imaging. Acta Physica Sinica, 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [7] Zhou Hong-Qiang, Wan Yu-Hong, Man Tian-Long. Adaptive imaging by incoherent digital holography based on phase change. Acta Physica Sinica, 2018, 67(4): 044202. doi: 10.7498/aps.67.20172202
    [8] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] Li Hao, Zhu Jing-Ping, Zhang Ning, Zhang Yun-Yao, Qiang Fan, Zong Kang. Effect of half wave plate angle mismatch on channel modulating imaging result and its compensation. Acta Physica Sinica, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [10] Liu Jing, Jin Wei-Qi, Wang Xia, Lu Xiao-Tian, Wen Ren-Jie. A new algorithm for polarization information restoration with considering the property of optoelectronic polarimeter. Acta Physica Sinica, 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [11] Xu Jie, Liu Fei, Liu Jie-Tao, Wang Jiao-Yang, Han Ping-Li, Zhou Cong-Hao, Shao Xiao-Peng. A design of real-time unipath polarization imaging system based on Wollaston prism. Acta Physica Sinica, 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [12] Qiang Fan, Zhu Jing-Ping, Zhang Yun-Yao, Zhang Ning, Li Hao, Zong Kang, Cao Ying-Yu. Reconstruction of polarization parameters in channel modulated polarization imaging system. Acta Physica Sinica, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [13] Li Yang-Hui, Hao Xiang, Shi Zhao-Yi, Shuai Shao-Jie, Wang Le. Effect of coating-induced polarization aberrations on the focusing properties in high numerical aperture optical system. Acta Physica Sinica, 2015, 64(15): 154214. doi: 10.7498/aps.64.154214
    [14] Hou Jun-Feng, Wu Tai-Xia, Wang Dong-Guang, Deng Yuan-Yong, Zhang Zhi-Yong, Sun Ying-Zi. Study on compensation method of beam deviation in division of time imaging polarimetry. Acta Physica Sinica, 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [15] Li Jie, Zhu Jing-Ping, Qi Chun, Zheng Chuan-Lin, Gao Bo, Zhang Yun-Yao, Hou Xun. Static Fourier-transform hyperspectral imaging full polarimetry. Acta Physica Sinica, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [16] Pang Wu-Bin, Cen Zhao-Feng, Li Xiao-Tong, Qian Wei, Shang Hong-Bo, Xu Wei-Cai. The effect of polarization light on optical imaging system. Acta Physica Sinica, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [17] Liu Wei-Wei, Ren Yu-Xuan, Gao Hong-Fang, Sun Qing, Wang Zi-Qiang, Li Yin-Mei. Aberrations in holographic array optical tweezers corrected with Zernike polynomials. Acta Physica Sinica, 2012, 61(18): 188701. doi: 10.7498/aps.61.188701
    [18] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [19] Kang Guo-Guo, Tan Qiao-Feng, Chen Wei-Li, Li Qun-Qing, Jin Wei-Qi, Jin Guo-Fan. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging. Acta Physica Sinica, 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [20] Sun Jin-Xia, Sun Qiang, Li Dong-Xi, Lu Zhen-Wu. Conformal dome aberration correction with diffractive elements. Acta Physica Sinica, 2007, 56(7): 3900-3905. doi: 10.7498/aps.56.3900
Metrics
  • Abstract views:  5563
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2022
  • Accepted Date:  17 June 2022
  • Available Online:  22 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回
Baidu
map