Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ionization energy and valence electron orbital binding energy of superheavy element Og(Z = 118) and its homologs

Zhang Tian-Cheng Pan Gao-Yuan Yu You-Jun Dong Chen-Zhong Ding Xiao-Bin

Citation:

Ionization energy and valence electron orbital binding energy of superheavy element Og(Z = 118) and its homologs

Zhang Tian-Cheng, Pan Gao-Yuan, Yu You-Jun, Dong Chen-Zhong, Ding Xiao-Bin
PDF
HTML
Get Citation
  • The ionization energy of the superheavy element Og (Z = 118) and its homolog elements Ar, Kr, Xe, Rn, and their ions are systematically calculated by using the GRASP2K program based on the multi-configuration Dirac-Hartree-Fock (MCDHF) method, taking into account relativistic effects, electron correlation effects between valence shell electrons, quantum electrodynamics effects, and Breit interaction. To reduce the uncertainty of the ionization energy derived from electron correlation effects which are not fully considered, the ionization potential of the superheavy element Og0–2+ and its homolog element Rn0–2+ are extrapolated by the extrapolation method. The ionization energy of extrapolated Rn0–5+ and Og5+ coincide well with experimental and other theoretical values. These results can be used to predict the unknown physical and chemical properties of the atoms and compounds of the superheavy element Og. In addition, the calculation results of the electron orbital binding energy of the atomic valence shell of the superheavy element Og and its homolog elements Ar, Kr, Xe, and Rn under relativistic and non-relativistic conditions show that owing to the relativistic effect, there occur strong orbital contraction phenomena in the 7s orbital and 7p1/2 orbital and strong splitting phenomena in the 7p1/2 orbital and 7p3/2 orbital of Og, which may cause the physical and chemical properties of the superheavy element Og to differ from those of other homologs.
      Corresponding author: Dong Chen-Zhong, dongcz@nwnu.edu.cn ; Ding Xiao-Bin, dingxb@nwnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. U1832126, 11874051), the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541), and the Doctoral Research Funds of Lanzhou City University, China (Grant No. LZCU-BS2019-50).
    [1]

    Düllmann C E 2017 Nucl. Phys. News 27 14Google Scholar

    [2]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [3]

    Kailas S 2014 Pramana 82 619Google Scholar

    [4]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [5]

    Schädel M 2015 Philos. Trans. R. Soc. London, Ser. A 373 20140191Google Scholar

    [6]

    Heßberger F P 2013 ChemPhysChem 14 483Google Scholar

    [7]

    Öhrström L, Reedijk J 2016 Pure Appl. Chem. 88 1225Google Scholar

    [8]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [9]

    Pyykko P 2011 Phys. Chem. Chem. Phys. 13 161Google Scholar

    [10]

    Desclaux J P 1973 At. Data Nucl. Data Tables 12 311Google Scholar

    [11]

    Fricke B, Greiner W, Waber J T 1971 Theor. Chim. Acta 21 235Google Scholar

    [12]

    Guo Y, Pašteka L F, Eliav E, Borschevsky A 2021 Advances in Quantum Chemistry (Musial M, Hoggan P E Ed.) (New York: Academic Press) pp107–123

    [13]

    Hangele T, Dolg M, Hanrath M, Cao X, Schwerdtfeger P 2012 J. Chem. Phys. 136 214105Google Scholar

    [14]

    Dzuba V A, Berengut J C, Harabati C, Flambaum V V 2017 Phys. Rev. A 95 012503Google Scholar

    [15]

    Sato T K, Asai M, Borschevsky A, Beerwerth R, Kaneya Y, Makii H, Mitsukai A, Nagame Y, Osa A, Toyoshima A, Tsukada K, Sakama M, Takeda S, Ooe K, Sato D, Shigekawa Y, Ichikawa S I, Düllmann C E, Grund J, Renisch D, Kratz J V, Schädel M, Eliav E, Kaldor U, Fritzsche S, Stora T 2018 J. Am. Chem. Soc. 140 14609Google Scholar

    [16]

    Ramanantoanina H, Borschevsky A, Block M, Laatiaoui M 2022 Atoms 10 48Google Scholar

    [17]

    Sewtz M, Backe H, Dretzke A, Kube G, Lauth W, Schwamb P, Eberhardt K, Gruning C, Thorle P, Trautmann N, Kunz P, Lassen J, Passler G, Dong C Z, Fritzsche S, Haire R G 2003 Phys. Rev. Lett. 90 163002Google Scholar

    [18]

    丁晓彬, 董晨钟 2004 53 3326Google Scholar

    Ding X L, Dong C Z 2004 Acta Phys. Sin. 53 3326Google Scholar

    [19]

    Goidenko I, Labzowsky L, Eliav E, Kaldor U, Pyykkö P 2003 Phys. Rev. A 67 020102Google Scholar

    [20]

    Lackenby B G C, Dzuba V A, Flambaum V V 2018 Phys. Rev. A 98 042512Google Scholar

    [21]

    Eliav E, Kaldo U, Ishikawa Y, Pyykkö P 1996 Phys. Rev. Lett. 77 5350Google Scholar

    [22]

    Pershina V, Borschevsky A, Eliav E, Kaldor U 2008 J. Chem. Phys. 129 144106Google Scholar

    [23]

    Jerabek P, Schuetrumpf B, Schwerdtfeger P, Nazarewicz W 2018 Phys. Rev. Lett. 120 053001Google Scholar

    [24]

    Razavi A K, Hosseini R K, Keating D A, Deshmukh P C, Manson S T 2020 J. Phys. B: At. Mol. Opt. Phys. 53 205203Google Scholar

    [25]

    Indelicato P, Santos J P, Boucard S, Desclaux J P 2007 Eur. Phys. J. D 45 155Google Scholar

    [26]

    Pershina V 2019 Radiochim. Acta 107 833Google Scholar

    [27]

    Johnson E, Fricke B, Keller O L, Nestor C W, Tucker T C 1990 J. Chem. Phys. 93 8041Google Scholar

    [28]

    Fricke B, Johnson E, Rivera G M 1993 Radiochim. Acta 62 17Google Scholar

    [29]

    Johnson E, Pershina V, Fricke B 1999 J. Phys. Chem. A 103 8458Google Scholar

    [30]

    Johnson E F B, Jacob T, Dong C Z, Fritzsche S, Pershina V 2002 J. Chem. Phys. 116 1862Google Scholar

    [31]

    Yu Y J, Li J G, Dong C Z, Ding X B, Fritzsche S, Fricke B 2007 Eur. Phys. J. D 44 51Google Scholar

    [32]

    Yu Y J, Dong C Z, Li J G, Fricke B 2008 J. Chem. Phys. 128 124316Google Scholar

    [33]

    Liu J S, Wang X, Sang K C 2020 J. Chem. Phys. 152 204303Google Scholar

    [34]

    Chang Z, Li J, Dong C 2010 J. Phys. Chem. A 114 13388Google Scholar

    [35]

    Zhang D, Zhang F, Ding X, Dong C 2021 Chin. Phys. B 30 043102Google Scholar

    [36]

    Ding X, Wu C, Zhang D, Zhang M, Dong C 2021 J. Quant. Spectrosc. Radiat. Transfer 259 107426Google Scholar

    [37]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [38]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer)

    [39]

    Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Comput. Phys. Commun. 21 207Google Scholar

    [40]

    Mackenzie B, Grant I, Norrington P 1980 Comput. Phys. Commun. 21 233Google Scholar

    [41]

    Dyall K, Grant I, Johnson C, Parpia F, Plummer E 1989 Comput. Phys. Commun. 55 425Google Scholar

    [42]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249Google Scholar

    [43]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [44]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [45]

    Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Phys. Rev. A 91 020501Google Scholar

    [46]

    Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Phys. Rev. A 66 062505Google Scholar

    [47]

    Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nucl. Phys. A 734 E21Google Scholar

    [48]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database (version 5.9), [Online], Available: https://physics.nist.gov/asd

  • 图 1  超重元素Og和其同主族元素Ar, Kr, Xe和Rn的价壳层电子轨道束缚能

    Figure 1.  Valence shell orbital energies diagram for the ground state of Ar, Kr, Xe, Rn and Og.

    表 1  超重元素Og0–6+基态电子组态、总角动量(J)、宇称(P), 在不同关联模型和活动空间下产生的组态波函数数目. 其中, DHF表示单组态Dirac-Hartree-Fock计算. nSD表示电子单、双激发到主量子数为n的活动空间形成的电子关联模型, {nalb}表示n = a, l = 0, 1, 2$, \cdots ,$b的活动空间轨道, 其中n为量子数, l 为轨道量子数

    Table 1.  Electron configuration, total angular momentum, parity, and number of configuration wave functions of the superheavy element Og0–6+ in different correlation models and active Spaces. DHF represents the single-configuration Dirac-Hartree-Fock calculation. nSD represents an electron association model formed by the single and double excitation of electrons to the active space where the principal quantum number is n. {nalb} represents the active space orbital of n = a, l = 0, 1, 2$ , \cdots , $b, where $ n $ is the principal quantum number and $ l $ is the orbital quantum number.

    电子组态关联模型活动空间组态波函数数目
    Og (J = 0+)
    [Rn]5f146d107s27p6DHF{n 7l 1}1
    7SD{n 7l 2}14
    8SD7SD + {n 8l 3}143
    9SD8SD + {n 9l 4}468
    10SD9SD + {n 10l 4}987
    11SD10SD + {n 11l 4}1700
    12SD11SD + {n 12l 4}2607
    Og1+ (J = 3/2)
    [Rn]5f146d107s27p5DHF{n 7l 1}1
    7SD{n 7l 2}51
    8SD7SD + {n 8l 3}758
    9SD8SD + {n 9l 4}2738
    10SD9SD + {n 10l 4}5982
    11SD10SD + {n 11l 4}10490
    12SD11SD + {n 12l 4}16262
    Og2+ (J = 2+)
    [Rn]5f146d107s27p4DHF{n 7l 1}2
    7SD{n 7l 2}76
    8SD7SD + {n 8l 3}1054
    9SD8SD + {n 9l 4}3841
    10SD9SD + {n 10l 4}8404
    11SD10SD + {n 11l 4}14743
    12SD11SD + {n 12l 4}22858
    Og3+ (J = 3/2)
    [Rn]5f146d107s27p3DHF{n 7l 1}3
    7SD{n 7l 2}66
    8SD7SD + {n 8l 3}802
    9SD8SD + {n 9l 4}2816
    10SD9SD + {n 10l 4}6094
    11SD10SD + {n 11l 4}10636
    12SD11SD + {n 12l 4}16442
    Og4+ (J = 0+)
    [Rn]5f146d107s27p2DHF{n 7l 1}2
    7SD{n 7l 2}22
    8SD7SD + {n 8l 3}163
    9SD8SD + {n 9l 4}500
    10SD9SD + {n 10l 4}1031
    11SD10SD + {n 11l 4}1756
    12SD11SD + {n 12l 4}2675
    Og5+ (J = 1/2)
    [Rn]5f146d107s27p1DHF{n 7l 1}1
    7SD{n 7l 2}13
    8SD7SD + {n 8l 3}96
    9SD8SD + {n 9l 4}293
    10SD9SD + {n 10l 4}606
    11SD10SD + {n 11l 4}1035
    12SD11SD + {n 12l 4}1580
    Og6+ (J = 0+)
    [Rn]5f146d107s2DHF{n 7l 1}1
    7SD{n 7l 2}5
    8SD7SD + {n 8l 3}17
    9SD8SD + {n 9l 4}38
    10SD9SD + {n 10l 4}68
    11SD10SD + {n 11l 4}107
    12SD11SD + {n 12l 4}155
    DownLoad: CSV

    表 2  超重元素Og及其同主族元素Ar, Kr, Xe, Rn的电离能(IP1—IP6)的计算值、外推值、误差以及其他理论值. 单位: eV. *表示实验测量值. 所有数据均保留到小数点后两位

    Table 2.  Calculated ionization energy (IP1–IP6, in eV) of the superheavy element Og and its homolog elements Ar, Kr, Xe and Rn by MCDHF method. Extrapolated, error, and other theoretical result are also given. *: Represents experimental measurements. All data is retained to two decimal digits.

    元素MCDHFNIST[48]αβ外推值误差Others
    IP1
    Ar15.5015.76*0.26
    Kr13.7414.00*0.260.00
    Xe11.8512.13*0.280.02
    Rn10.4810.75*(0.32)(0.04)10.800.0410.76[12]
    Og8.53(0.38)(0.06)8.910.068.86[13]
    8.87[20]
    8.91[22]
    8.84[23]
    8.88[12]
    IP2
    Ar27.3627.63*0.27
    Kr24.0624.36*0.300.03
    Xe20.6320.98*0.350.05
    Rn18.6521.40±1.90(0.42)(0.07)19.070.0718.99[12]
    Og15.80(0.51)(0.09)16.310.0916.19[12]
    IP3
    Ar40.4540.74*±0.010.29
    Kr35.4935.84*±0.020.350.06
    Xe30.6031.05*±0.040.450.10
    Rn28.2129.40±1.00(0.59)(0.14)28.800.14
    Og24.28(0.77)(0.18)25.050.18
    IP4
    Ar58.9659.58±0.180.62
    Kr50.4850.85*±0.110.37
    Xe42.1142.20*±0.200.09
    Rn37.8836.90±1.70(0.44)38.321.53
    Og32.70(0.55)33.250.99
    IP5
    Ar74.6074.84±0.170.24
    Kr64.0864.69*±0.200.61
    Xe54.3854.10*±0.50–0.28
    Rn52.8352.90±1.90(0.44)53.272.13
    Og55.37(0.55)55.922.24
    IP6
    Ar91.1391.29*0.16
    Kr78.0778.49*±0.200.42
    Xe66.1666.70*0.54
    Rn64.4264.00±2.00(0.44)64.862.59
    Og67.04(0.55)67.592.70
    DownLoad: CSV

    表 3  超重元素Og及其同主族元素Ar, Kr, Xe和Rn的价壳层轨道在相对论和非相对论下的轨道束缚能(单位: a.u.). R表示相对论、NR表示非相对论结果(n = 3, 4, 5, 6, 7分别对应元素Ar, Kr, Xe和Rn)

    Table 3.  Relativistic and non-relativistic orbital binding energies (in a.u.) of the valence shell orbitals of superheavy element Og and its homolog elements Ar, Kr, Xe and Rn. R for relativistic, NR for non-relativistic (n = 3, 4, 5, 6, 7 correspond to elements Ar, Kr, Xe, Rn and Og, respectively).

    轨道ArKrXeRnOg
    RNRRNR RNR RNR RNR
    $ {n\mathrm{s}}_{1/2} $1.291.281.191.151.010.941.070.871.300.77
    $ {n\mathrm{p}}_{1/2} $0.600.590.540.520.490.460.540.430.740.39
    $ {n\mathrm{p}}_{3/2} $0.590.590.510.520.440.460.380.430.310.39
    DownLoad: CSV
    Baidu
  • [1]

    Düllmann C E 2017 Nucl. Phys. News 27 14Google Scholar

    [2]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [3]

    Kailas S 2014 Pramana 82 619Google Scholar

    [4]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [5]

    Schädel M 2015 Philos. Trans. R. Soc. London, Ser. A 373 20140191Google Scholar

    [6]

    Heßberger F P 2013 ChemPhysChem 14 483Google Scholar

    [7]

    Öhrström L, Reedijk J 2016 Pure Appl. Chem. 88 1225Google Scholar

    [8]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [9]

    Pyykko P 2011 Phys. Chem. Chem. Phys. 13 161Google Scholar

    [10]

    Desclaux J P 1973 At. Data Nucl. Data Tables 12 311Google Scholar

    [11]

    Fricke B, Greiner W, Waber J T 1971 Theor. Chim. Acta 21 235Google Scholar

    [12]

    Guo Y, Pašteka L F, Eliav E, Borschevsky A 2021 Advances in Quantum Chemistry (Musial M, Hoggan P E Ed.) (New York: Academic Press) pp107–123

    [13]

    Hangele T, Dolg M, Hanrath M, Cao X, Schwerdtfeger P 2012 J. Chem. Phys. 136 214105Google Scholar

    [14]

    Dzuba V A, Berengut J C, Harabati C, Flambaum V V 2017 Phys. Rev. A 95 012503Google Scholar

    [15]

    Sato T K, Asai M, Borschevsky A, Beerwerth R, Kaneya Y, Makii H, Mitsukai A, Nagame Y, Osa A, Toyoshima A, Tsukada K, Sakama M, Takeda S, Ooe K, Sato D, Shigekawa Y, Ichikawa S I, Düllmann C E, Grund J, Renisch D, Kratz J V, Schädel M, Eliav E, Kaldor U, Fritzsche S, Stora T 2018 J. Am. Chem. Soc. 140 14609Google Scholar

    [16]

    Ramanantoanina H, Borschevsky A, Block M, Laatiaoui M 2022 Atoms 10 48Google Scholar

    [17]

    Sewtz M, Backe H, Dretzke A, Kube G, Lauth W, Schwamb P, Eberhardt K, Gruning C, Thorle P, Trautmann N, Kunz P, Lassen J, Passler G, Dong C Z, Fritzsche S, Haire R G 2003 Phys. Rev. Lett. 90 163002Google Scholar

    [18]

    丁晓彬, 董晨钟 2004 53 3326Google Scholar

    Ding X L, Dong C Z 2004 Acta Phys. Sin. 53 3326Google Scholar

    [19]

    Goidenko I, Labzowsky L, Eliav E, Kaldor U, Pyykkö P 2003 Phys. Rev. A 67 020102Google Scholar

    [20]

    Lackenby B G C, Dzuba V A, Flambaum V V 2018 Phys. Rev. A 98 042512Google Scholar

    [21]

    Eliav E, Kaldo U, Ishikawa Y, Pyykkö P 1996 Phys. Rev. Lett. 77 5350Google Scholar

    [22]

    Pershina V, Borschevsky A, Eliav E, Kaldor U 2008 J. Chem. Phys. 129 144106Google Scholar

    [23]

    Jerabek P, Schuetrumpf B, Schwerdtfeger P, Nazarewicz W 2018 Phys. Rev. Lett. 120 053001Google Scholar

    [24]

    Razavi A K, Hosseini R K, Keating D A, Deshmukh P C, Manson S T 2020 J. Phys. B: At. Mol. Opt. Phys. 53 205203Google Scholar

    [25]

    Indelicato P, Santos J P, Boucard S, Desclaux J P 2007 Eur. Phys. J. D 45 155Google Scholar

    [26]

    Pershina V 2019 Radiochim. Acta 107 833Google Scholar

    [27]

    Johnson E, Fricke B, Keller O L, Nestor C W, Tucker T C 1990 J. Chem. Phys. 93 8041Google Scholar

    [28]

    Fricke B, Johnson E, Rivera G M 1993 Radiochim. Acta 62 17Google Scholar

    [29]

    Johnson E, Pershina V, Fricke B 1999 J. Phys. Chem. A 103 8458Google Scholar

    [30]

    Johnson E F B, Jacob T, Dong C Z, Fritzsche S, Pershina V 2002 J. Chem. Phys. 116 1862Google Scholar

    [31]

    Yu Y J, Li J G, Dong C Z, Ding X B, Fritzsche S, Fricke B 2007 Eur. Phys. J. D 44 51Google Scholar

    [32]

    Yu Y J, Dong C Z, Li J G, Fricke B 2008 J. Chem. Phys. 128 124316Google Scholar

    [33]

    Liu J S, Wang X, Sang K C 2020 J. Chem. Phys. 152 204303Google Scholar

    [34]

    Chang Z, Li J, Dong C 2010 J. Phys. Chem. A 114 13388Google Scholar

    [35]

    Zhang D, Zhang F, Ding X, Dong C 2021 Chin. Phys. B 30 043102Google Scholar

    [36]

    Ding X, Wu C, Zhang D, Zhang M, Dong C 2021 J. Quant. Spectrosc. Radiat. Transfer 259 107426Google Scholar

    [37]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [38]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer)

    [39]

    Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Comput. Phys. Commun. 21 207Google Scholar

    [40]

    Mackenzie B, Grant I, Norrington P 1980 Comput. Phys. Commun. 21 233Google Scholar

    [41]

    Dyall K, Grant I, Johnson C, Parpia F, Plummer E 1989 Comput. Phys. Commun. 55 425Google Scholar

    [42]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249Google Scholar

    [43]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [44]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [45]

    Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Phys. Rev. A 91 020501Google Scholar

    [46]

    Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Phys. Rev. A 66 062505Google Scholar

    [47]

    Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nucl. Phys. A 734 E21Google Scholar

    [48]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database (version 5.9), [Online], Available: https://physics.nist.gov/asd

  • [1] Zhao Guo-Dong, Cao Jin, Liang Ting, Feng Min, Lu Ben-Quan, Chang Hong. Accurate calculation of hyperfine-induced 5d6s 3D1,3→6s2 1S0 E2 transitions and hyperfine constants of ytterbium atoms. Acta Physica Sinica, 2024, 73(9): 093101. doi: 10.7498/aps.73.20240028
    [2] Wang Xia, Jia Fang-Shi, Yao Ke, Yan Jun, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Hyperfine interaction constants and Landé g factors of clock states of Al-like ions. Acta Physica Sinica, 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [3] Xiao Zhi-Lei, Quan Wei, Xu Song-Po, Liu Xiao-Jun, Wei Zheng-Rong, Chen Jing. Low energy structure of above-threshold ionization spectra produced by mid-infrared laser pulses. Acta Physica Sinica, 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [4] Duan Chun-Yang, Li Na, Zhao Yan, Li Chang-Yong. Accurate determination of ionization energy of 1, 3-diethoxybenzene via photoionization efficiency spectrum in electrostatic field. Acta Physica Sinica, 2021, 70(5): 053301. doi: 10.7498/aps.70.20201273
    [5] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [6] Zhang Bin, Zhao Jian, Zhao Zeng-Xiu. Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules. Acta Physica Sinica, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [7] Zhang Ting-Xian, Li Ji-Guang, Liu Jian-Peng. Theoretical study on the isotope shift factors for the 3s2 1S0 → 3s3p 3,1P1o transitions in Al+ ion. Acta Physica Sinica, 2018, 67(5): 053101. doi: 10.7498/aps.67.20172261
    [8] Yu Geng-Hua, Liu Hong, Zhao Peng-Yi, Xu Bing-Ming, Gao Dang-Li, Zhu Xiao-Ling, Yang Wei. Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method. Acta Physica Sinica, 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [9] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [10] Li Wen-Liang, Zhang Ji, Yao Hong-Bin. Multi-configuration time dependent Hartree Fock method in three different representations. Acta Physica Sinica, 2013, 62(12): 123202. doi: 10.7498/aps.62.123202
    [11] Wang Ke-Dong, Gu Jun, Zhu Chuan-Chuan, Liu Yu-Fang. Ab initio study on CH3C(O)OSSOC(O)CH3: configurations and energies. Acta Physica Sinica, 2011, 60(7): 073102. doi: 10.7498/aps.60.073102
    [12] Tang Xin-Xin, Luo Wen-Yun, Wang Chao-Zhuang, He Xin-Fu, Zha Yuan-Zi, Fan Sheng, Huang Xiao-Long, Wang Chuan-Shan. Non-ionizing energy loss of low energy proton in semiconductor materials Si and GaAs. Acta Physica Sinica, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [13] Jia Fei, Xu Hu-Shan, Huang Tian-Heng, Yuan Xiao-Hua, Zhang Hong-Bin, Li Jun-Qing, W.Scheid. Study of mass distributions of quasifission products based on dinuclear system. Acta Physica Sinica, 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [14] Jia Fei, Xu Hu-Shan, Chen Ruo-Fu, Zhang Hong-Bin, Nasirov Avazbek, Li Jun-Qing, W. Scheid. The influence of nuclear orientation in fusion dynamics. Acta Physica Sinica, 2007, 56(2): 764-768. doi: 10.7498/aps.56.764
    [15] Jia Fei, Xu Hu-Shan, Zheng Chuan, Fan Rui-Rui, Zhang Xue-Ying, Li Jun-Qing, Scheid W.. Study of the mechanism for synthesizing superheavy nuclei based on dinuclear system. Acta Physica Sinica, 2007, 56(4): 2047-2052. doi: 10.7498/aps.56.2047
    [16] Su Guo-Lin, Ren Xue-Guang, Zhang Shu-Feng, Ning Chuan-Gang, Zhou Hui, Li Bin, Huang Feng, Li Gui-Qin, Deng Jing-Kang. An electron momentum spectroscopy investigation on the 1a′ inner valence orbital of cyclopentene. Acta Physica Sinica, 2005, 54(9): 4108-4112. doi: 10.7498/aps.54.4108
    [17] Zhang Shu-Feng, Su Guo-Lin, Ren Xue-Guang, Ning Chuan-Gang, Zhou Hui, Li Bin, Li Gui-Qin, Deng Jing-Kang. Investigation of electron momentum spectroscopy for inner valence orbitals 4a gg+4buu of diacetyl. Acta Physica Sinica, 2005, 54(4): 1552-1556. doi: 10.7498/aps.54.1552
    [18] Li Gui-Qin, Deng Jing-Kang, Li Bin, Ren Xue-Guang, Ning Chuan-Gang, Zhang Shu-Feng, Su Guo-Lin. EMS investigation of inner valance orbital 1a" for butanone. Acta Physica Sinica, 2005, 54(10): 4669-4672. doi: 10.7498/aps.54.4669
    [19] Ding Xiao-Bin, Dong Chen-Zhong. Theoretical predictions on the low-lying excitation structure of super-heavy element bohrium (Z=107). Acta Physica Sinica, 2004, 53(10): 3326-3329. doi: 10.7498/aps.53.3326
    [20] Ge Zi-Ming, Wang Zhi-Wen, Zhou Ya-Jun. Theoretical calculation of ionization potential and term energy of the ground states 1s22s of lithium-like systems from Z=21 to 30. Acta Physica Sinica, 2004, 53(1): 42-47. doi: 10.7498/aps.53.42
Metrics
  • Abstract views:  4094
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2022
  • Accepted Date:  05 July 2022
  • Available Online:  22 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回
Baidu
map