搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半波片角度失配对通道调制型偏振成像效果的影响及补偿

李浩 朱京平 张宁 张云尧 强帆 宗康

引用本文:
Citation:

半波片角度失配对通道调制型偏振成像效果的影响及补偿

李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康

Effect of half wave plate angle mismatch on channel modulating imaging result and its compensation

Li Hao, Zhu Jing-Ping, Zhang Ning, Zhang Yun-Yao, Qiang Fan, Zong Kang
PDF
导出引用
  • 通道调制型偏振成像系统能够实时地对目标进行全偏振成像, 是当前偏振成像领域的研究热点之一. 基于萨瓦板的通道调制型偏振仪中半波片的光轴方向对成像结果的准确性有较大的影响. 本文分析了半波片失配角的大小对探测器采集到的光强分布的影响, 得到了二者之间的表达式, 根据该表达式提出通过测量半波片失配角对系统进行定标并利用测得的半波片失配角对偏振成像的解调结果进行修正和补偿的方法. 计算机仿真结果显示失配角为0.5时, S1, S2 和S3 的解调结果准确度在经过修正补偿后分别提高了0.06%, 3.49%和3.49%. 表明该方法能够较好地对解调出的偏振斯托克斯参数图像进行补偿, 得到更精确的成像结果, 对提高通道调制型偏振成像的质量具有重要的意义.
    Polarization imaging technology is a powerful tool in remote sensing, bioscience, or other scientific areas science, and it can extract the polarization information of target effectively. As a novel polarization imaging technology, the channel modulating polarization imaging has been widely investigated in recent years, owing to its prominent advantages of compact, snapshot and full-Stokes acquirable. In the polarization imaging system based on Savart Plate, a half wave plate with its optical axis at an angle of 22.5 is used to rotate the vibration direction of each incident light to 45. Thus, the amplitude of the light could be equally divided by the second Savart Plate polariscope. Finally, the different components of light will interfere with each other on the focal plane and the target polarization information will be modulated in the interference pattern. Since the intensity distribution of interference pattern is sensitive to the orientation of the half wave plate, a small mismatch angle of half wave plate will lead to a wrong polarization image. In order to solve this problem, we investigate the relationship between the mismatch angle and the image intensity grabbed by focal plane array (FPA) and propose an error eliminating method to improve the accuracy of polarization imaging. We analyze how the mismatch angle affects the light intensity and deduce the expression of the image obtained by the FPA. According to the expression, the raw image we grabbed directly by the FPA is a superposition of the modulated Stokes images with different carrier frequencies. Compared with the ideal expression, the expression we obtained shows that the channels of Stokes parameter S1 and S2,3 each contain a constant factor which is related to the mismatch angle . On the basis of this expression, we propose a method to measure the mismatch angle by imaging a target twice, one is behind a polarizer that is oriented at 0 and the other at 45. Then we can calibrate the system by calculating the mismatch angle through the demodulated images. To image a target with the calibrated system, we just demodulate the raw image obtained by the FPA and then divide the reconstructed stokes images by the constant factor which is determined by . For a mismatch angle of 0.5, a computer simulation is conducted. The result shows that through the compensation method, the accuracies of S1, S2 and S3 can be increased by 0.06%, 3.49% and 3.49%, respectively.
      通信作者: 朱京平, jpzhu@xjtu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61205187)和中央高校基本科研业务费专项资金资助(批准号: xkjc2013008)资助的课题.
      Corresponding author: Zhu Jing-Ping, jpzhu@xjtu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205187) and the Fundamental Research Funds for the Central Universities, China (Grant No. xkjc2013008).
    [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [2]

    Harsdorf S, Reuter R, Tnebn S 1999 SPIE Munich Germany 3821 378

    [3]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭靖 2012 61 077801]

    [4]

    Lewis G D, Jordan D L, Roberts J 1999 Appl. Opt. 38 3937

    [5]

    van der Laan J D, Scrymgeour D A, Kemme S A, Dereniak E L 2015 Appl. Opt. 54 2266

    [6]

    Kazuhiko O 2003 Opt. Express. 11 1510

    [7]

    Kazuhiko O, Naooki S 2006 Proc. of SPIE. 6295 629508

    [8]

    Luo H T, Kazuhiko O, Edward D, Michael K, James S, Eustace L D 2008 Appl. Opt. 47 4413

    [9]

    Kazuhiko O, Ryosuke S, Masayuki O, Darren M, Eustace L D 2009 OSA

    [10]

    Edward D, Luo H T, Kazuhiko O, Eustace D, James S 2009 Appl. Opt. 48 1663

    [11]

    Cao Q Z, Zhang C M, Edward D 2012 Appl. Opt. 51 5197

    [12]

    Naooki S, Satoru O, Katsura O, Masahiro K, Rintaro K, Kazuhiko O 2013 Proc. of SPIE 8873 88730M-1

  • [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [2]

    Harsdorf S, Reuter R, Tnebn S 1999 SPIE Munich Germany 3821 378

    [3]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭靖 2012 61 077801]

    [4]

    Lewis G D, Jordan D L, Roberts J 1999 Appl. Opt. 38 3937

    [5]

    van der Laan J D, Scrymgeour D A, Kemme S A, Dereniak E L 2015 Appl. Opt. 54 2266

    [6]

    Kazuhiko O 2003 Opt. Express. 11 1510

    [7]

    Kazuhiko O, Naooki S 2006 Proc. of SPIE. 6295 629508

    [8]

    Luo H T, Kazuhiko O, Edward D, Michael K, James S, Eustace L D 2008 Appl. Opt. 47 4413

    [9]

    Kazuhiko O, Ryosuke S, Masayuki O, Darren M, Eustace L D 2009 OSA

    [10]

    Edward D, Luo H T, Kazuhiko O, Eustace D, James S 2009 Appl. Opt. 48 1663

    [11]

    Cao Q Z, Zhang C M, Edward D 2012 Appl. Opt. 51 5197

    [12]

    Naooki S, Satoru O, Katsura O, Masahiro K, Rintaro K, Kazuhiko O 2013 Proc. of SPIE 8873 88730M-1

  • [1] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统.  , 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [2] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正.  , 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [3] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析.  , 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [4] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法.  , 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [5] 王成, 赵俊明, 姜田, 冯一军. 基于场变换的毫米波半波片设计.  , 2018, 67(7): 070201. doi: 10.7498/aps.67.20171774
    [6] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法.  , 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [7] 许洁, 刘飞, 刘杰涛, 王娇阳, 韩平丽, 周淙浩, 邵晓鹏. 基于渥拉斯顿棱镜的单路实时偏振成像系统设计.  , 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [8] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建.  , 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [9] 侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿. 分时偏振成像系统中光束偏离的补偿方法研究.  , 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [10] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术.  , 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [11] 代海山, 张淳民, 穆廷魁. 宽场、消色差、温度补偿风成像干涉仪中次级条纹研究.  , 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [12] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究.  , 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [13] 朱化春, 张淳民, 简小华. 新型风成像干涉仪温度补偿理论研究.  , 2010, 59(2): 893-898. doi: 10.7498/aps.59.893
    [14] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究.  , 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [15] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究.  , 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
    [16] 马 晶, 张光宇, 戎亦文, 谭立英. 基于半波片的偏振跟踪理论分析.  , 2006, 55(1): 24-28. doi: 10.7498/aps.55.24
    [17] 王目光, 李唐军, 娄采云, 简水生, 霍 力, 姚和军, 曾 丽, 崔 杰, 刁 操. 4×10Gb/s OTDM系统中偏振模色散自适应补偿的研究.  , 2005, 54(6): 2774-2778. doi: 10.7498/aps.54.2774
    [18] 马 晶, 章若冰, 张伟力, 王清月. BBOⅠ类相位匹配光参量放大中群速失配的补偿.  , 2005, 54(6): 2745-2750. doi: 10.7498/aps.54.2745
    [19] 马 晶, 章若冰, 张伟力, 王清月. 飞秒光参量放大中三波群速失配的补偿.  , 2005, 54(2): 755-762. doi: 10.7498/aps.54.755
    [20] 郑远, 于丽, 杨伯君, 张晓光. 能够补偿二阶偏振模色散的三阶段偏振模色散补偿器.  , 2002, 51(12): 2745-2749. doi: 10.7498/aps.51.2745
计量
  • 文章访问数:  5856
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-04-22
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map