搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度水下偏振成像方法

韩平丽 刘飞 张广 陶禹 邵晓鹏

引用本文:
Citation:

多尺度水下偏振成像方法

韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏

Multi-scale analysis method of underwater polarization imaging

Han Ping-Li, Liu Fei, Zhang Guang, Tao Yu, Shao Xiao-Peng
PDF
导出引用
  • 水下偏振成像技术利用散射光偏振特性能够有效提高水下成像质量,在水下目标探测和识别领域具有重要应用价值.针对该技术在背景散射光和目标信息光分离时由于噪声放大现象导致重建图像质量受限的问题,提出多尺度水下偏振成像方法.该方法利用图像分层处理思想,结合小波变换的多尺度特性,对体现图像高对比度的基础层和低对比度但细节信息丰富的细节层分别进行处理,重建高对比度、高信噪比的清晰场景图像.实验结果表明,多尺度水下偏振成像方法不仅能够大幅提高对比度,复原图像细节信息,而且能够有效抑制放大噪声,提高重建图像的信噪比,在水下偏振成像领域具有良好应用前景.
    Underwater polarization imaging is a valuable technology for underwater detection and exploration, since it can provide abundant information about target scene via the removal of background light from raw images. However, in a conventional polarization imaging method, the reconstructed image has limited quality caused by the inaccurate estimation of degree of polarization (DoP) and noise amplification, which finally leads to the incomplete removal of background light. The situation becomes worse if the target and background light reach an almost equal DoP.To date, various approaches including acoustic imaging, photoacoustic imaging, and polarization imaging have been implemented to realize underwater imaging. Notably, underwater polarization imaging is of particular interest due to its simple system structure, low cost and excellent performance in recovering target information. It mainly involves the separation of the backscattered light denoted as background light from the target scattered light acting as the target light. Removal of the background light from the raw image gives rise to a clear target image, which has been the focus of polarization imaging for a long period. The most representative approach was presented by Schechner[Schechner Y Y, Karpel N 2005 IEEE Journal of Oceanic Engineering 30 570] who utilized the DoP of background light and target light to recover clear image. Further optimization of the approach was also conducted by researchers including Schechner[Tali T, Schechner Y Y 2009 IEEE Transactions on Pattern Analysis and Machine Intelligence 31 385], Huang[Huang B J, Liu T G, Hu H F, Han J H, Yu M X 2016 Optics Express 24 9826], et al. However, the influence of noise amplification in the process on the reconstruction results has always been ignored, which accounts for the results to some extent though the explanation is unsatisfactory.In this paper, we present a multi-scale polarization imaging strategy to suppress the noise amplification effect and its influence on the final results. It originates from the difference in polarization image between two diverse layers. Specifically, the image is divided into two layers, one of which is characterized by high contrast but remarkably difference between the target and background, known as base layer BTI; the other layer is low-contrast but contains the detailed information about the target, known as detail layer DTI. Special processes are applied to the two layers according to their characteristics, respectively. For the base layer BTI, combined bilateral filtering is used to suppress noise. As for the detail layer, it is first processed by wavelet transform with considering its multi-resolution characteristic. After the wavelet coefficient correction via adjusting the kernel function w(x, f), the details in target image is perfected with keeping iterations. During the updating procedure, the image noise can be further suppressed. Underwater experiments are conducted in the laboratory to demonstrate the validity of the proposed method. Besides, quantitative analyses also verify the improvement in final target image.Compared with conventional underwater polarization imaging methods, the proposed method is good at dealing with various target conditions, since it handles noise amplification without requiring any additional equipment. Furthermore, the proposed method is easy to incorporate in a conventional polarization imaging system to achieve underwater images with better quality and valid detail information. Therefore, the proposed method has more potential applications in underwater imaging.
      通信作者: 邵晓鹏, xpshao@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575154,61475123)、国家自然科学基金青年基金(批准号:61705175)、中国博士后科学基金(批准号:2017M613063)、中国科学院长春光学精密机械研究所应用光学国家重点实验室基金(批准号:CS16017050001)和中央高校基本科研业务费(批准号:JB170503)资助的课题.
      Corresponding author: Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575154, 61475123), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61705175), the China Postdoctoral Science Foundation (Grant No. 2017M613063), the State Key Laboratory of Optical Technology for Applied Optics, Chang Chun Institute of Optics, Fine Mechanics and Physics, China (Grant No. CS16017050001), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB170503).
    [1]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Ocean. Eng. 41 541

    [2]

    George M J R, Kattawar W 1999 Appl. Opt. 38 6431

    [3]

    Harvey E S, Shortis M R 1998 Mar. Technol. Soc. J. 32 3

    [4]

    Zhao X W, Jin T, Chi H, Q S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 64 104201]

    [5]

    Schechner Y Y, Averbuch Y 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 1655

    [6]

    Guan J G, Zhu J P, Heng T 2015 Chin. Phy. Lett. 32 074201

    [7]

    Lewis G D, Jordan D L, Roberts P J 1999 Appl. Opt. 38 3937

    [8]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570

    [9]

    Miller D A, Dereniak E L 2012 Appl. Opt. 51 4092

    [10]

    Kattawar W, Gray D J 2003 Appl. Opt. 42 7225

    [11]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385

    [12]

    Han J, Yang K, Xia M, Sun L, Cheng Z, Liu H, Ye J 2015 Appl. Opt. 54 3294

    [13]

    Huang B J, Liu T G, Han H F, Han J H, Yu M X 2016 Opt. Express 24 9826

    [14]

    Dubreuil M, Delrot P, Leonard I, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [15]

    Gilbert G D, Pernicka J C 1967 Appl. Opt. 6 741

    [16]

    Schettini R, Corchs S 2010 EURASIP J. Adv. Signal Process 2010 1

    [17]

    Liu F, Shao X P, Gao Y, Xiang L B, Han P L, Li G 2016 J. Opt. Soc. Am. A 33 237

    [18]

    Han P L, Liu F, Yang K, Ma J Y, Li J J, Shao X P 2017 Appl. Opt. 56 6631

    [19]

    Liu F, Shao X P, Xiang L B, Gao Y, Han P L, Wang L 2015 Chin. Phys. Lett. 32 114203

    [20]

    Zhao L Y, L B Y, Li X R, Chen S H 2015 Acta Phys. Sin. 64 124204 (in Chinese) [赵辽英, 吕步云, 厉小润, 陈淑涵 2015 64 124204]

    [21]

    Knaus C, Zwicker M 2013 Proceedings of the 20th IEEE International Conference on Image Processing New Jersey, USA, September 15-18, 2013 p440

    [22]

    Liu F, Cao L, Shao X P, Han P L, Xiang L B 2015 Appl. Opt. 54 8116

    [23]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 61 119501]

    [24]

    Papari G, Idowu N, Varslot T 2017 IEEE Trans. Image Process 26 251

    [25]

    Myint S W, Zhu T, Zheng B J 2015 IEEE Geosci. Remote Sens. 12 1232

    [26]

    Dubreuil M, Delrot P, Leonard P, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [27]

    Piederrière Y, Boulvert F, Cariou J, Jeune B L, Guern Y, Brun G L 2005 Opt. Express 13 5030

  • [1]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Ocean. Eng. 41 541

    [2]

    George M J R, Kattawar W 1999 Appl. Opt. 38 6431

    [3]

    Harvey E S, Shortis M R 1998 Mar. Technol. Soc. J. 32 3

    [4]

    Zhao X W, Jin T, Chi H, Q S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 64 104201]

    [5]

    Schechner Y Y, Averbuch Y 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 1655

    [6]

    Guan J G, Zhu J P, Heng T 2015 Chin. Phy. Lett. 32 074201

    [7]

    Lewis G D, Jordan D L, Roberts P J 1999 Appl. Opt. 38 3937

    [8]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570

    [9]

    Miller D A, Dereniak E L 2012 Appl. Opt. 51 4092

    [10]

    Kattawar W, Gray D J 2003 Appl. Opt. 42 7225

    [11]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385

    [12]

    Han J, Yang K, Xia M, Sun L, Cheng Z, Liu H, Ye J 2015 Appl. Opt. 54 3294

    [13]

    Huang B J, Liu T G, Han H F, Han J H, Yu M X 2016 Opt. Express 24 9826

    [14]

    Dubreuil M, Delrot P, Leonard I, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [15]

    Gilbert G D, Pernicka J C 1967 Appl. Opt. 6 741

    [16]

    Schettini R, Corchs S 2010 EURASIP J. Adv. Signal Process 2010 1

    [17]

    Liu F, Shao X P, Gao Y, Xiang L B, Han P L, Li G 2016 J. Opt. Soc. Am. A 33 237

    [18]

    Han P L, Liu F, Yang K, Ma J Y, Li J J, Shao X P 2017 Appl. Opt. 56 6631

    [19]

    Liu F, Shao X P, Xiang L B, Gao Y, Han P L, Wang L 2015 Chin. Phys. Lett. 32 114203

    [20]

    Zhao L Y, L B Y, Li X R, Chen S H 2015 Acta Phys. Sin. 64 124204 (in Chinese) [赵辽英, 吕步云, 厉小润, 陈淑涵 2015 64 124204]

    [21]

    Knaus C, Zwicker M 2013 Proceedings of the 20th IEEE International Conference on Image Processing New Jersey, USA, September 15-18, 2013 p440

    [22]

    Liu F, Cao L, Shao X P, Han P L, Xiang L B 2015 Appl. Opt. 54 8116

    [23]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 61 119501]

    [24]

    Papari G, Idowu N, Varslot T 2017 IEEE Trans. Image Process 26 251

    [25]

    Myint S W, Zhu T, Zheng B J 2015 IEEE Geosci. Remote Sens. 12 1232

    [26]

    Dubreuil M, Delrot P, Leonard P, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [27]

    Piederrière Y, Boulvert F, Cariou J, Jeune B L, Guern Y, Brun G L 2005 Opt. Express 13 5030

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术.  , 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像.  , 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [3] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究.  , 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [4] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术.  , 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [5] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正.  , 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [6] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术.  , 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [7] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究.  , 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [8] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法.  , 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [9] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析.  , 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [10] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法.  , 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [11] 郑娟娟, 姚保利, 邵晓鹏. 基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制.  , 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [12] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法.  , 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [13] 许洁, 刘飞, 刘杰涛, 王娇阳, 韩平丽, 周淙浩, 邵晓鹏. 基于渥拉斯顿棱镜的单路实时偏振成像系统设计.  , 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [14] 李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康. 半波片角度失配对通道调制型偏振成像效果的影响及补偿.  , 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [15] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建.  , 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [16] 赵欣慰, 金韬, 池灏, 曲嵩. 不同光照条件下水下成像背景光的建模与研究.  , 2015, 64(10): 104201. doi: 10.7498/aps.64.104201
    [17] 侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿. 分时偏振成像系统中光束偏离的补偿方法研究.  , 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [18] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究.  , 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [19] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术.  , 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [20] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究.  , 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
计量
  • 文章访问数:  10355
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2017-11-14
  • 刊出日期:  2018-03-05

/

返回文章
返回
Baidu
map