-
由于探测器响应的特性, 造成光电偏振成像中直接利用图像灰度重构的偏振信息与真实目标场景偏振信息的严重偏离, 基于重构偏振信息的后续定量化处理将完全失去意义. 为此, 提出了一种考虑探测器特性的光电偏振成像系统偏振信息重构方法, 分别针对分时和同时偏振成像模式分析了实现方法, 并设计进行了实际偏振成像实验. 实验数据表明: 探测器特性直接影响偏振成像系统重构的斯托克斯矢量和偏振度, 值偏离1越大, 直接利用图像灰度重构的偏振度的重构误差也越大; 该偏振信息重构方法能够准确地重构出目标场景的斯托克斯矢量和偏振度信息, 为后续偏振成像的研究和定量应用奠定了理论基础.The property of optoelectronic detector indicates that the response between incident light intensity and output digital number is non-linear. For imaging polarimeter, if light intensity is directly substituted by digital number when restoring polarization information from polarization images, the restored polarization information will apparently deviate from the true scene polarization information. This deviation makes the quantitative application of polarization information meaningless. To solve this problem, in this paper we propose a new algorithm for restoring the polarizaiton information with considering the property of polarimeter of the detector. Firstly, theorical correction equation of polarization information restoration are proposed for division-of-time polarimeter and for simultaneous polarimeter respectively. And then, specific implementation and polarization imaging test experiment are carried out. For divison-of-time polarimeter, we firstly test the property of the detector, and then use the tested parameter and the proposed restoration equation to restore polarizaiton information from the data of polarzation imaging test experiment. The degree of linear polarization (DoLP) restored with digital number directly changes from 0.932 to 0.753 when changes from 1.0 to 1.5. The DoLP restored with correction equation proposed in this paper varies from 0.932 to 0.926, which approaches to the ture scene DoLP value 1.0. For simultaneous polarimter, the instrument matrixes of the polarimeter are calibrated first under different setting values, and then the calibrated instrument matrixes are used to restore poliarzation information from the data of polarization imaging test experiment. The DoLP restored with digital number directly changes from 1.3763 to 1.1582 when changes from 1.0 to 1.5, which exceeds the possible DoLP range from 0 to 1.0. The DoLP restored with correction equation proposed in this paper varies from 0.8428 to 0.8683, which approaches to the ture scene DoLP value 1.0. Experimental result shows that the property of polarimeter has an apparent effect on the restored polarization information, and that the polarizaiton information restoration error increases with setting deviation from 1.0. With the restoration algorithm proposed in this paper, the restored polarization information can steadily approach to the scene polarization information with acceptable slants small. The poroposed polarization restoration algorithm with considering property establishes a theoretical foundation for the future study of polarimeter and its quantitative application.
[1] Farlow C A, Chenault D B, Pezzaniti J L, Spradley K D, Gulley M G 2002 Proc. SPIE 4484 118
[2] Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]
[3] Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 64 060701]
[4] Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 64 224203]
[5] Wolff L B 1997 Image Vis. Comput. 15 81
[6] Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese) [廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页]
[7] Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453
[8] Cairns B, Edgar E R, Larry D T 1999 Proc. SPIE 3754 186
[9] Powell S B, Gruev V 2013 Opt. Express 21 21039
[10] York T, Gruev V 2011 Proc. SPIE 8012 80120 H-1
[11] Song M X, Sun B, Sun X B, Hong J 2012 Optics Precis Eng. 20 1153 (in Chinese) [宋茂新, 孙斌, 孙晓兵, 洪津 2012 光学精密工程 20 1153]
[12] Chen L G, Meng F G, Yuan Y L, Zheng X B 2010 J. Atmosph. Environ. Opt. 5 227 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2010 大气与环境光学学报 5 227]
[13] Kang Q, Yuan Y L, Li J J, Wu H Y, Zheng X B, Yan J 2015 J. Atmosph. Environ. Opt. 10 343 (in Chinese) [康晴, 袁银麟, 李健军, 吴浩宇, 郑小兵, 闫静 2015 大气与环境光学学报 10 343]
[14] Gao H W, Zhang C M, Zhao B C 2011 Optik 122 2110
[15] Xu C J, Su L, Yang G Y, Zhao J S, Cai Y, Pan S C 2009 Infrared Technol. 31 362 (in Chinese) [徐参军, 苏兰, 杨根远, 赵劲松, 蔡毅, 潘顺臣 2009 红外技术 31 362]
[16] Xu C J, Zhao J S, Pan S C, Cai Y 2012 Infrared Technol. 34 103 (in Chinese) [徐参军, 赵劲松, 潘顺臣, 蔡毅 2012 红外技术 34 103]
[17] Xia R Q 2015 Ph. D Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [夏润秋 2015 博士学位论文 (北京: 北京理工大学)]
[18] Jin W Q, Hu W J 2006 Radiometry, Luminance and Chromaticity (Beijing: Beijing Institute ofTechnology Press) p34 (in Chinese) [金伟其, 胡威捷 2003 辐射度 光度与色度及其测量 (北京: 北京理工大学出版社) 第34页]
[19] Bai T Z, Jin W Q 2006 Optoelectronis Imaging Theory and Technology (Beijing: Beijing Institute ofTechnology Press) P252 (in Chinese) [白廷柱, 金伟其 2010 光电成像原理与技术 (北京: 北京理工大学出版社) 第252页]
[20] Liu J, Jin W Q, Wang Y H, Wang X 2015 Acta Opt. Sin. 35 0511001 (in Chinese) [刘敬, 金伟其, 王亚慧, 王霞 2015 光学学报 35 0511001]
[21] Bigu L, Cheney N 2007 Proc. SPIE 6682 668205
[22] Azzma R M A, Lopez A G 1989 J. Opt. Soc. Am. A 6 1513
-
[1] Farlow C A, Chenault D B, Pezzaniti J L, Spradley K D, Gulley M G 2002 Proc. SPIE 4484 118
[2] Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]
[3] Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 64 060701]
[4] Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 64 224203]
[5] Wolff L B 1997 Image Vis. Comput. 15 81
[6] Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese) [廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页]
[7] Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453
[8] Cairns B, Edgar E R, Larry D T 1999 Proc. SPIE 3754 186
[9] Powell S B, Gruev V 2013 Opt. Express 21 21039
[10] York T, Gruev V 2011 Proc. SPIE 8012 80120 H-1
[11] Song M X, Sun B, Sun X B, Hong J 2012 Optics Precis Eng. 20 1153 (in Chinese) [宋茂新, 孙斌, 孙晓兵, 洪津 2012 光学精密工程 20 1153]
[12] Chen L G, Meng F G, Yuan Y L, Zheng X B 2010 J. Atmosph. Environ. Opt. 5 227 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2010 大气与环境光学学报 5 227]
[13] Kang Q, Yuan Y L, Li J J, Wu H Y, Zheng X B, Yan J 2015 J. Atmosph. Environ. Opt. 10 343 (in Chinese) [康晴, 袁银麟, 李健军, 吴浩宇, 郑小兵, 闫静 2015 大气与环境光学学报 10 343]
[14] Gao H W, Zhang C M, Zhao B C 2011 Optik 122 2110
[15] Xu C J, Su L, Yang G Y, Zhao J S, Cai Y, Pan S C 2009 Infrared Technol. 31 362 (in Chinese) [徐参军, 苏兰, 杨根远, 赵劲松, 蔡毅, 潘顺臣 2009 红外技术 31 362]
[16] Xu C J, Zhao J S, Pan S C, Cai Y 2012 Infrared Technol. 34 103 (in Chinese) [徐参军, 赵劲松, 潘顺臣, 蔡毅 2012 红外技术 34 103]
[17] Xia R Q 2015 Ph. D Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [夏润秋 2015 博士学位论文 (北京: 北京理工大学)]
[18] Jin W Q, Hu W J 2006 Radiometry, Luminance and Chromaticity (Beijing: Beijing Institute ofTechnology Press) p34 (in Chinese) [金伟其, 胡威捷 2003 辐射度 光度与色度及其测量 (北京: 北京理工大学出版社) 第34页]
[19] Bai T Z, Jin W Q 2006 Optoelectronis Imaging Theory and Technology (Beijing: Beijing Institute ofTechnology Press) P252 (in Chinese) [白廷柱, 金伟其 2010 光电成像原理与技术 (北京: 北京理工大学出版社) 第252页]
[20] Liu J, Jin W Q, Wang Y H, Wang X 2015 Acta Opt. Sin. 35 0511001 (in Chinese) [刘敬, 金伟其, 王亚慧, 王霞 2015 光学学报 35 0511001]
[21] Bigu L, Cheney N 2007 Proc. SPIE 6682 668205
[22] Azzma R M A, Lopez A G 1989 J. Opt. Soc. Am. A 6 1513
计量
- 文章访问数: 7060
- PDF下载量: 175
- 被引次数: 0