搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量像差理论的离轴反射光学系统初始结构设计

操超 廖志远 白瑜 范真节 廖胜

引用本文:
Citation:

基于矢量像差理论的离轴反射光学系统初始结构设计

操超, 廖志远, 白瑜, 范真节, 廖胜

Initial configuration design of off-axis reflective optical system based on vector aberration theory

Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng
PDF
HTML
导出引用
  • 传统的离轴反射光学系统初始结构设计方法是先求取轴对称反射光学系统结构, 然后通过光瞳离轴、视场离轴或二者结合的方法实现无遮拦设计. 由于同轴光学系统像差分布规律不适用于离轴光学系统, 因此离轴后的反射光学系统结构像差较大, 而且系统无遮拦设计过程复杂. 本文提出了一种基于矢量像差理论的离轴反射光学系统初始结构设计方法, 可以直接获取光瞳离轴、视场离轴或二者结合的无遮拦离轴反射光学系统初始结构. 该方法可以获得较好的离轴反射光学系统初始结构供光学设计软件进一步优化. 针对面阵探测器, 设计了一个长波红外离轴三反光学系统, 通过光瞳离轴和视场离轴实现无遮拦设计, 光学系统成像质量好, 反射镜不存在倾斜和偏心, 光学系统易于装调.
    The traditional method of designing the initial configuration of off-axis reflective optical system is to first obtain the initial configuration of coaxial reflective optical system, and then achieve the unobscured design with an offset aperture stop or a biased input field, or both. Because the aberration distribution of coaxial reflective optical system is not applicable to the off-axis reflective optical system, the obtained unobscured off-axis reflective optical system has large aberration, and the unobscured design process is complicated. In this paper we present a method of designing an initial configuration of off-axis reflective optical system based on vector aberration theory. With this design method, a good unobscured initial configuration of off-axis reflective optical system can be directly obtained by using an offset aperture stop or a biased input field, or both. Based on the vector aberration theory and gaussian brackets, the third-order aberration coefficient is derived for off-axis reflective optical system. Initial configuration performance is important for optical design, especially for the complicated optical system design. The selection of initial configuration highly affects the final system imaging performance, fabrication difficulty and alignment difficulty. An error function is established to evaluate the performance of off-axis reflective optical system, and it consists of aberration coefficients and other constraints. The genetic algorithm is a highly parallel, random and adaptive global optimization algorithm. To obtain a good initial configuration for the off-axis reflective optical system, the genetic algorithm is used to search for the initial configuration with minimum residual aberration. This method can obtain a good initial configuration of off-axis reflective optical system for further optimization. The benefit of this design method is demonstrated by designing an off-axis three-mirror optical system. For the focal plane array, a long-wave infrared off-axis three-mirror optical system is designed. A good initial configuration is obtained with the proposed method, which achieves the unobscured design by using an offset aperture stop and a biased input field. To improve the performance of initial configuration, the obtained initial configuration is optimized with the optical design software. The designed optical system has good imaging quality. As the mirrors are free from the tilts and decenters, the designed optical system is aligned easily.
      通信作者: 廖志远, liaozhiyuan1@163.com
    • 基金项目: 国家自然科学基金(批准号: 61501429)资助的课题.
      Corresponding author: Liao Zhi-Yuan, liaozhiyuan1@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61501429).
    [1]

    沈本兰, 常军, 王希, 牛亚军, 冯树龙 2014 63 144201Google Scholar

    Shen B L, Chang J, Wang X, Niu Y J, Feng S L 2014 Acta Phys. Sin. 63 144201Google Scholar

    [2]

    Jiang Z Y, Li L, Huang Y F 2009 Chin. Phys. B 18 2774Google Scholar

    [3]

    Fuerschbach K, Davis G E, Thompson K P, Rolland J P 2014 Opt. Lett. 39 2896Google Scholar

    [4]

    Meng Q Y, Wang H Y, Wang K J, Wang Y, Ji Z H, Wang D 2016 Appl. Opt. 55 8962Google Scholar

    [5]

    Nie Y F, Gross H, Zhong Y, Duerr F 2017 Appl. Opt. 56 5630Google Scholar

    [6]

    刘军, 刘伟奇, 康玉思, 吕博, 冯睿, 柳华, 魏忠伦 2013 光学学报 33 1022002

    Liu J, Liu W Q, Kang Y S, Lü B, Feng R, Liu H, Wei Z L 2013 Acta Opt. Sin. 33 1022002

    [7]

    徐奉刚, 黄玮, 徐明飞 2016 光学学报 36 1222002

    Xu F G, Huang W, Xu M F 2016 Acta Opt. Sin. 36 1222002

    [8]

    李东熙, 卢振武, 孙强, 刘华, 张云翠 2007 56 5766Google Scholar

    Li D X, Lu Z W, Sun Q, Liu H, Zhang Y C 2007 Acta Phys. Sin. 56 5766Google Scholar

    [9]

    夏春秋, 钟兴, 金光 2015 光学学报 35 0922002

    Xia C Q, Zhong X, Jin G 2015 Acta Opt. Sin. 35 0922002

    [10]

    Thompson K P 2005 J. Opt. Soc. Am. A 22 1389Google Scholar

    [11]

    孙金霞, 潘国庆, 刘英 2013 62 094203Google Scholar

    Sun J X, Pan G Q, Liu Y 2013 Acta Phys. Sin. 62 094203Google Scholar

    [12]

    Wang Y, Zhang X, Wang L J, Wang C 2014 Chin. Phys. B 23 014202Google Scholar

    [13]

    Schmid T, Rolland J P, Rakich A, Thompson K P 2010 Opt. Express 18 17433Google Scholar

    [14]

    Zhong Y, Gross H 2017 Opt. Express 25 10016Google Scholar

    [15]

    Shi H D, Jiang H L, Zhang X, Wang C, Liu T 2016 Appl. Opt. 55 6782Google Scholar

    [16]

    庞志海, 樊学武, 任国瑞, 丁蛟腾, 徐亮, 凤良杰 2016 红外与激光工程 45 0618002

    Pang Z H, Fan X W, Ren G R, Ding J T, Xu L, Feng L J 2016 Infrared Laser Eng. 45 0618002

    [17]

    Thompson K P 1980 Ph. D. Dissertation (Tucson: University of Arizona)

    [18]

    邱立军, 付霖宇, 董琪, 顾钧元 2018 兵器装备工程学报 39 88Google Scholar

    Qiu L J, Fu L Y, Dong Q, Gu J Y 2018 J. Ordan. Equip. Eng. 39 88Google Scholar

    [19]

    Yan F, Zhang X J 2009 Opt. Express 17 16809Google Scholar

    [20]

    Zhou G Y, Chen Y X, Wang Z G, Song H W 1999 Appl. Opt. 38 4281Google Scholar

  • 图 1  光瞳离轴光学系统示意图

    Fig. 1.  Schematic ofoptical system with an offset aperture stop.

    图 2  光线追迹模型

    Fig. 2.  Rays trace model.

    图 3  设计流程

    Fig. 3.  Flow chart of design process.

    图 4  误差函数收敛曲线

    Fig. 4.  Convergence curve of the error function.

    图 5  离轴三反光学系统初始结构性能分析 (a)系统布局; (b)点列图均方根直径; (c)畸变网格

    Fig. 5.  Initial configurationperformance analysis of the designed system: (a) System layout; (b) RMS spot diameter; (c) distortion grid.

    图 6  离轴三反光学系统性能分析 (a)系统布局; (b)点列图均方根直径; (c)畸变网格; (d)调制传递函数

    Fig. 6.  Performance analysis of the designed system: (a) System layout; (b) RMS spot diameter; (c) distortion grid; (d) MTF.

    表 1  系统参数

    Table 1.  System specifications.

    ParameterSpecification
    Wavelength range/μm8 to 12
    Focal length/mm200
    F-number2.5
    Field of view4° × 6°
    Pixel size/μm30
    下载: 导出CSV

    表 2  参数范围和求解结果

    Table 2.  Parameters ranges and solution of designed system.

    ParameterRangeSolution
    d1/mmd1 = –d2126.4621
    d2/mm[–200, –50]–126.4621
    d3/mm[50, 200]144.1817
    r1/mm[–500, –50]–297.3433
    r2/mm[–500, –50]–451.5485
    r3/mm[–500, –50]–131.0513
    k1[–5, 5]–0.5789
    k2[–5, 5]4.7595
    k3[–5, 5]–0.1263
    下载: 导出CSV
    Baidu
  • [1]

    沈本兰, 常军, 王希, 牛亚军, 冯树龙 2014 63 144201Google Scholar

    Shen B L, Chang J, Wang X, Niu Y J, Feng S L 2014 Acta Phys. Sin. 63 144201Google Scholar

    [2]

    Jiang Z Y, Li L, Huang Y F 2009 Chin. Phys. B 18 2774Google Scholar

    [3]

    Fuerschbach K, Davis G E, Thompson K P, Rolland J P 2014 Opt. Lett. 39 2896Google Scholar

    [4]

    Meng Q Y, Wang H Y, Wang K J, Wang Y, Ji Z H, Wang D 2016 Appl. Opt. 55 8962Google Scholar

    [5]

    Nie Y F, Gross H, Zhong Y, Duerr F 2017 Appl. Opt. 56 5630Google Scholar

    [6]

    刘军, 刘伟奇, 康玉思, 吕博, 冯睿, 柳华, 魏忠伦 2013 光学学报 33 1022002

    Liu J, Liu W Q, Kang Y S, Lü B, Feng R, Liu H, Wei Z L 2013 Acta Opt. Sin. 33 1022002

    [7]

    徐奉刚, 黄玮, 徐明飞 2016 光学学报 36 1222002

    Xu F G, Huang W, Xu M F 2016 Acta Opt. Sin. 36 1222002

    [8]

    李东熙, 卢振武, 孙强, 刘华, 张云翠 2007 56 5766Google Scholar

    Li D X, Lu Z W, Sun Q, Liu H, Zhang Y C 2007 Acta Phys. Sin. 56 5766Google Scholar

    [9]

    夏春秋, 钟兴, 金光 2015 光学学报 35 0922002

    Xia C Q, Zhong X, Jin G 2015 Acta Opt. Sin. 35 0922002

    [10]

    Thompson K P 2005 J. Opt. Soc. Am. A 22 1389Google Scholar

    [11]

    孙金霞, 潘国庆, 刘英 2013 62 094203Google Scholar

    Sun J X, Pan G Q, Liu Y 2013 Acta Phys. Sin. 62 094203Google Scholar

    [12]

    Wang Y, Zhang X, Wang L J, Wang C 2014 Chin. Phys. B 23 014202Google Scholar

    [13]

    Schmid T, Rolland J P, Rakich A, Thompson K P 2010 Opt. Express 18 17433Google Scholar

    [14]

    Zhong Y, Gross H 2017 Opt. Express 25 10016Google Scholar

    [15]

    Shi H D, Jiang H L, Zhang X, Wang C, Liu T 2016 Appl. Opt. 55 6782Google Scholar

    [16]

    庞志海, 樊学武, 任国瑞, 丁蛟腾, 徐亮, 凤良杰 2016 红外与激光工程 45 0618002

    Pang Z H, Fan X W, Ren G R, Ding J T, Xu L, Feng L J 2016 Infrared Laser Eng. 45 0618002

    [17]

    Thompson K P 1980 Ph. D. Dissertation (Tucson: University of Arizona)

    [18]

    邱立军, 付霖宇, 董琪, 顾钧元 2018 兵器装备工程学报 39 88Google Scholar

    Qiu L J, Fu L Y, Dong Q, Gu J Y 2018 J. Ordan. Equip. Eng. 39 88Google Scholar

    [19]

    Yan F, Zhang X J 2009 Opt. Express 17 16809Google Scholar

    [20]

    Zhou G Y, Chen Y X, Wang Z G, Song H W 1999 Appl. Opt. 38 4281Google Scholar

  • [1] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计.  , 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计.  , 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [3] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法.  , 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展.  , 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验.  , 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [6] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统.  , 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析.  , 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计.  , 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [9] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法.  , 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [10] 严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰. 基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析.  , 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [11] 张晓晖, 张爽, 孙春生. 粗糙海面对高斯分布激光光束的反射模型推导.  , 2016, 65(14): 144204. doi: 10.7498/aps.65.144204
    [12] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究.  , 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [13] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计.  , 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [14] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计.  , 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [15] 任洪亮. 有限远共轭显微镜光镊设计和误差分析.  , 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [16] 孙金霞, 潘国庆, 刘英. 面对称光学系统的初级波像差理论研究.  , 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [17] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析.  , 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [18] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计.  , 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [19] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计.  , 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究.  , 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
计量
  • 文章访问数:  13213
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-04-11
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回
Baidu
map