Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase transitions of Na-ion layered oxide materials and their influence on properties

Ding Fei-Xiang Rong Xiao-Hui Wang Hai-Bo Yang Yang Hu Zi-Lin Dang Rong-Bin Lu Ya-Xiang Hu Yong-Sheng

Citation:

Phase transitions of Na-ion layered oxide materials and their influence on properties

Ding Fei-Xiang, Rong Xiao-Hui, Wang Hai-Bo, Yang Yang, Hu Zi-Lin, Dang Rong-Bin, Lu Ya-Xiang, Hu Yong-Sheng
PDF
HTML
Get Citation
  • Na-ion batteries possess great potential applications in the large-scale energy storage. The Na-ion layered oxide cathode (NaxTMO2) has received increasing attention in scientific and industrial research due to its high capacity, easy manufacture, adjustable voltage, and low cost. However, the larger the Na+ radius and the stronger the Na+-Na+ electrostatic repulsion is, which will lead to various structural configurations and complex structural transitions, resulting in multiple structure-property connections. In this paper, the structural types of Na-ion layered transition metal oxide cathode materials are introduced, and their structural evolutions during Na+ de/intercalation are summarized for revealing the mechanism for structural transformation of Na-ion layered transition-metal oxide cathode material and its effect on electrochemical performance; the existing challenges are discussed; the improvement strategies are proposed finally.
      Corresponding author: Rong Xiao-Hui, rong@iphy.ac.cn ; Hu Yong-Sheng, yshu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51725206, 52122214, 52072403), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), the China Postdoctoral Science Foundation (Grant No. 2021M703460), and the Natural Science Foundation of Beijing, China (Grant No. 2212022).
    [1]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 67 120601Google Scholar

    Lu Y X, Zhao C L, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [2]

    Sun Y, Guo S, Zhou H 2019 Energy Environ Sci. 12 825Google Scholar

    [3]

    Kubota K, Kumakura S, Yoda Y, Kuroki K, Komaba S 2018 Advan. Energy Mater. 8 1703415Google Scholar

    [4]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X 2019 Small 0 1805381

    [5]

    Kim S W, Seo D H, Ma X, Ceder G, Kang K 2012 Advan. Energy Mater. 2 710Google Scholar

    [6]

    Kim H, Park I, Lee S, Kim H, Park K Y, Park Y U, Kim H, Kim J, Lim H D, Yoon W S, Kang K 2013 Chem. Mater. 25 3614Google Scholar

    [7]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Advan. Energy Mater. 8 1702869Google Scholar

    [8]

    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B 2013 Angew. Chem. Int. Ed. 52 1964Google Scholar

    [9]

    Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J 2014 Angew. Chem. Int. Ed. 53 5892Google Scholar

    [10]

    Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu Y S, Chen L 2017 Small 13 1701835Google Scholar

    [11]

    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y S, Maier J, Yu Y 2018 Mater. Today 21 960Google Scholar

    [12]

    Delmas C, Fouassier C, Hagenmuller P 1980 Physica B+C 99 81Google Scholar

    [13]

    胡勇胜, 陆雅翔, 陈立泉 2020 钠离子电池科学与技术 (北京: 科学出版社) 第20页

    Hu Y S, Lu Y X, Chen L Q 2020 Na-ion batteries:science and technology (Beijing: Science Press) p20 (in Chinese)

    [14]

    Mortemard de Boisse B, Cheng J H, Carlier D, Guignard M, Pan C J, Bordère S, Filimonov D, Drathen C, Suard E, Hwang B-J, Wattiaux A, Delmas C 2015 J. Mater. Chem. A 3 10976Google Scholar

    [15]

    Mortemard de Boisse B, Liu G, Ma J, Nishimura S I, Chung S C, Kiuchi H, Harada Y, Kikkawa J, Kobayashi Y, Okubo M, Yamada A 2016 Nat. Commun. 7 11397Google Scholar

    [16]

    Nanba Y, Iwao T, Boisse B M d, Zhao W, Hosono E, Asakura D, Niwa H, Kiuchi H, Miyawaki J, Harada Y, Okubo M, Yamada A 2016 Chem. Mater. 28 1058Google Scholar

    [17]

    Perez A J, Batuk D, Saubanère M, Rousse G, Foix D, McCalla E, Berg E J, Dugas R, H. W. van den Bos K, Doublet M L, Gonbeau D, Abakumov A, Tendeloo G, Tarascon J-M 2016 Chem. Mater. 28 8278Google Scholar

    [18]

    Zhao C, Wang Q, Yao Z, Wang J, Sanchez-Lengeling B, Ding F, Qi X, Lu Y, Bai X, Li B, Li H, Aspuru-Guzik A, Huang X, Delmas C, Wagemaker M, Chen L, Hu Y S 2020 Science 370 708

    [19]

    Liu J, Kan W H, Ling C D 2021 J. Power Sources 481 229139Google Scholar

    [20]

    Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I 2012 Inorg. Chem. 51 6211Google Scholar

    [21]

    Sathiya M, Jacquet Q, Doublet M-L, Karakulina O M, Hadermann J, Tarascon J M 2018 Advan. Energy Mater. 8 1702599Google Scholar

    [22]

    Croguennec L, Pouillerie C, Mansour A N, Delmas C 2001 J. Mater. Chem. 11 131Google Scholar

    [23]

    Mortemard de Boisse B, Reynaud M, Ma J, Kikkawa J, Nishimura S I, Casas-Cabanas M, Delmas C, Okubo M, Yamada A 2019 Nat. Commun. 10 2185Google Scholar

    [24]

    Maazaz A, Delmas C, Hagenmuller P 1983 J. Incl. Phenom. 1 45Google Scholar

    [25]

    Didier C, Guignard M, Denage C, Szajwaj O, Ito S, Saadoune I, Darriet J, Delmas C 2011 Electrochem. Solid-State Lett. 14 A75Google Scholar

    [26]

    Kobota K, Ikeuchi I, Nakayama T, Takei C, Yabuuchi N, Shiiba H, Nakayama M, Komaba S 2014 J. Phys. Chem. C 119 166

    [27]

    Yabuuchi N, Komaba S 2014 Sci. Techn. Advan. Mater. 15 043501Google Scholar

    [28]

    Silván B, Gonzalo E, Djuandhi L, Sharma N, Fauth F, Saurel D 2018 J. Mater. Chem. A 6 15132Google Scholar

    [29]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [30]

    赵成龙 2020 博士学位论文 (北京: 中国科学院大学)

    Zhao C L 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [31]

    Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q 2014 Chin Phys B 23

    [32]

    Lu Z, Dahn J R 2001 J. Electrochem. Soc. 148 A1225Google Scholar

    [33]

    Lee D H, Xu J, Meng Y S 2013 Phys. Chem. Chem. Phys. 15 3304Google Scholar

    [34]

    Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L, Guo Y G 2018 Sci. Adv. 4 eaar6018Google Scholar

    [35]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [36]

    Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S 2016 Angew. Chem. Int. Ed. 55 12760Google Scholar

    [37]

    Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X, Delmas C, Chen L 2019 Joule 3 503Google Scholar

    [38]

    Bai X, Sathiya M, Mendoza-Sánchez B, Iadecola A, Vergnet J, Dedryvère R, Saubanère M, Abakumov A M, Rozier P, Tarascon J-M 2018 Advan. Energy Mater. 8 1802379

    [39]

    Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S 2014 J. Mater. Chem. A 2 16851Google Scholar

    [40]

    Gao A, Zhang Q, Li X, Shang T, Tang Z, Lu X, Luo Y, Ding J, Kan W H, Chen H, Yin W, Wang X, Xiao D, Su D, Li H, Rong X, Yu X, Yu Q, Meng F, Nan C, Delmas C, Chen L, Hu Y, Gu L, 2021 Nat. Sustain. 5 214Google Scholar

    [41]

    Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X Q, Chen L, Huang X 2013 Nat. Commun. 4 2365Google Scholar

    [42]

    Wang Y, Xiao R, Hu Y S, Avdeev M, Chen L 2015 Nat. Commun. 6 6954Google Scholar

    [43]

    Shanmugam R, Lai W 2014 ECS Electrochem. Lett. 3 A23Google Scholar

    [44]

    Yu H, Ren Y, Xiao D, Guo S, Zhu Y, Qian Y, Gu L, Zhou H 2014 Angew. Chem. Int. Ed. 53 8963Google Scholar

    [45]

    Guo S, Liu P, Sun Y, Zhu K, Yi J, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 11701Google Scholar

    [46]

    Wang P F, Yao H R, Zuo T T, Yin Y X, Guo Y G 2017 Chem. Commun. 53 1957Google Scholar

    [47]

    丁飞翔, 高飞, 容晓晖, 杨凯, 陆雅翔, 胡勇胜 2019 物理化学学报 36 1904022Google Scholar

    Ding F X, Gao F, Rong X H, Yang K, Lu Y X, Hu Y S 2019 Acta Phys-Chim Sin. 36 1904022Google Scholar

    [48]

    BRACONNIER J J, DELMAS C, HAGENMULLER 1982 Mat. Res. Bull. 17 993Google Scholar

    [49]

    Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J Solid State Chem 3 1Google Scholar

    [50]

    Ma X, Chen H, Ceder G 2011 J Electrochem Soc 158 A1307Google Scholar

    [51]

    Takeda Y, Nakahara K, Nishijima M, Imanishi N, Yamamoto O 1994 Mater Res Bull 29 659Google Scholar

    [52]

    Braconnier J J, Delmas C, Fouassier C, Hagenmuller P 1980 Mat. Res. Bull. 15 1797Google Scholar

    [53]

    Han M H, Gonzalo E, Casas-Cabanas M, Rojo T 2014 J Power Sources 258 266Google Scholar

    [54]

    Wang L, Wang J, Zhang X, Ren Y, Zuo P, Yin G, Wang J 2017 Nano Energy 34 215Google Scholar

    [55]

    Kim D, Lee E, Slater M, Lu W, Rood S, Johnson C S 2012 Electrochem Commun 18 66Google Scholar

    [56]

    Linqin M, Xinguo Q, Yongsheng H, Hong L, Liquan C, Xuejie H J E S S 2016 Energy Storage Sci Techn 5 324Google Scholar

    [57]

    Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun C J, Wen J, Wang J, Miller D, Amine K, Ma Z 2016 Advan. Energy Mater. 6 1601306Google Scholar

    [58]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 ACS Appl. Mater. Interfaces 7 8585Google Scholar

    [59]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 Appl. Mater. Interfaces 7 8585

    [60]

    Maletti S, Sarapulova A, Schokel A, Mikhailova D 2019 ACS Appl. Mater. Interfaces 11 33923Google Scholar

    [61]

    Wang P F, Yao H R, Liu X Y, Zhang J N, Gu L, Yu X Q, Yin Y X, Guo Y G 2017 Advan. Mater. 29 1700210Google Scholar

    [62]

    Yao H R, Wang P F, Gong Y, Zhang J, Yu X, Gu L, OuYang C, Yin Y X, Hu E, Yang X-Q, Stavitski E, Guo Y, Wan L 2017 J. Am. Chem. Soc. 139 8440Google Scholar

    [63]

    Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F, Chakir M, Tarascon J M 2019 Advan. Energy Mater. 9 1901785Google Scholar

    [64]

    Mariyappan S, Marchandier T, Rabuel F, Iadecola A, Rousse G, Morozov A V, Abakumov A M, Tarascon J-M 2020 Chem. Mater. 32 1657Google Scholar

    [65]

    Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 J Mater Chem A 9 12830Google Scholar

    [66]

    Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B 2021 Energy Envir. Sci. 14 2883Google Scholar

    [67]

    Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, Biasi L, Kubel C, Brezesinski T, Bhattacharya S, Hahn H, Breitung B 2018 Nat. Commun. 9 3400Google Scholar

    [68]

    Zhao C, Ding F, Lu Y, Chen L, Hu Y S 2020 Angew. Chem. Int. Ed. Engl. 59 264Google Scholar

    [69]

    Ding F, Zhao C, Zhou D, Meng Q, Xiao D, Zhang Q, Niu Y, Li Y, Rong X, Lu Y, Chen L, Hu Y S 2020 Energy Storage Mater. 30 420

    [70]

    Zhou Q, Li Y Q, Tang F, Li K X, Rong X H, Lu Y X, Chen L Q, Hu Y S 2021 Chin. Phys. Lett. 38 076501Google Scholar

    [71]

    Gonzalo E, Han M H, López del Amo J M, Acebedo B, Casas-Cabanas M, Rojo T 2014 J. Mater. Chem. A 2 18523Google Scholar

    [72]

    Parant J P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J. Solid State Chem. 3 1Google Scholar

    [73]

    Paulsen J M, Dahn J R 1999 Solid State Ionics 126 3Google Scholar

    [74]

    Liu X, Zhong G, Xiao Z, Zheng B, Zuo W, Zhou K, Liu H, Liang Z, Xiang Y, Chen Z, Ortiz G, Fu R, Yang Y 2020 Nano Energy 76 104997Google Scholar

    [75]

    Ding F, Meng Q, Yu P, Wang H, Niu Y, Li Y, Yang Y, Rong X, Liu X, Lu Y, Chen L, Hu Y S 2021 Adv. Funct. Mater. 31 2001120

    [76]

    Guo K S, Lu Y X, Wang H L, Ma X B, Li Z Y, Hu Y S, Dongfeng Chen 2019 Chin. Phys. B 28 68203Google Scholar

    [77]

    Fei Xie  Y L, Liquan Chen , Hu Y S 2021 Chin. Phys. Lett. 38 118401Google Scholar

    [78]

    Zhao C, Yao Z, Wang Q, Li H, Wang J, Liu M, Ganapathy S, Lu Y, Cabana J, Li B, Bai X, Aspuru-Guzik A, Wagemaker M, Chen L, Hu Y S 2020 J. Am. Chem. Soc. 142 5742Google Scholar

    [79]

    Liang X, Yu T Y, Ryu H H, Sun Y-K 2022 Energy Storage Mater. 47 515

  • 图 1  (a)—(e)常见钠离子层状材料的晶体结构示意图, 插图为层状结构中过渡金属和钠离子多面体的连接机理示意图; (f)从垂直于过渡金属层的方向观察六方和单斜结构和晶胞参数的区别和联系

    Figure 1.  (a)–(e) Illustrations of crystal structures relevant to the Na+ layered oxide cathode materials, insets are the face-sharing schemes of TMO6 and NaO6 in the layered structures; (f) the view perpendicular to the layer direction highlighting the relationship between the hexagonal and monoclinic unit cells.

    图 2  各种3d过渡金属离子在钠离子电池层状氧化物中的特点[13]

    Figure 2.  Comparison of the characteristics of 3d TM used in NIB layered cathode materials[13].

    图 3  已报道的P2相和O3相中层状氧化物的阳离子势[18]

    Figure 3.  Cationic potential of representative P2- and O3-type Na-ion layered oxides[18].

    图 4  当碱金属阳离子和阴离子离子半径分别相同时O和P型配位环境中的阴离子距离对比[19]

    Figure 4.  Comparison of anion-anion distances in O- and P-type coordinations assuming the same cation and anion radii[19]

    图 5  (a) NaNi0.5Mn0.5O2材料在2.2—3.8和2.2—4.5 V电压范围内的首周充放电曲线[20]; (b) Na1–xNi0.5Mn0.5O2电极的非原位XRD图谱[20], 星号代表集流体镍网的衍射峰; (c)NaNi0.5Mn0.5O2材料首圈在C/20C倍率下充放电过程中的原位XRD图谱[21]

    Figure 5.  (a) Initial charge-discharge curves of the NaNi0.5Mn0.5O2 cell at a rate of 1/50C (4.8 mA/g) in the voltage ranges of 2.2–3.8 and 2.2–4.5 V versus sodium metal; (b) ex situ XRD patterns of the Na1–xNi0.5Mn0.5O2[20], asterisks show a nickel mesh used as a current collector; (c) in situ XRD patterns of the NaNi0.5Mn0.5O2 material at C/20 rate[21].

    图 6  (a) Na1–xNi0.5Mn0.5O2电极的晶体结构转化示意图; (b) O3和O'3相之间的转化关系; (c) P3和P'3相之间的转化关系[20]

    Figure 6.  (a) Schematic illustrations of the crystal structure of Na1–xNi0.5Mn0.5O2; (b) the transforming relationship between O3 and O'3; (c) the transforming relationship between between P3 and P'3[20].

    图 7  (a) P3相过渡金属层可能的滑移方向αβ; (b) O1相的晶体结构示意图; (c)通过αβ滑移P3相向O3, O1, OPO13和O1PO3相的转变示意图; (d)通过αβ滑移P3相向OO13, O1OP3, POO13和PO1O3相的转变示意图; (e)通过αβ滑移P3相向OP2相的转变示意图. 晶体结构观察方向为[100], 钠位为黄色多面体, 过渡金属位于紫色八面体, 结构示意图中没有考虑晶胞参数的变化[19]

    Figure 7.  (a) P3 phase TM layer displacement vectors α and β; (b) schematic illustrations of the crystal structure of O1 phase; (c) phase transitions from P3 to O3, O1, OPO13 and O1PO3 via shifting α and β; (d) phase transitions from P3 to OO13, O1OP3, O1OP3 and POO13 via shifting α or β; (e) phase transition from P3 to OP2 via shifting α and β. All structures viewed along [100] direction, all cell parameters changes have been ignored and TM octahedra are shown in purple and all Na sites in yellow[19].

    图 8  (a) Na2RuO3的原位XRD图谱和充放电曲线; (b)根据原位实验确定的随钠含量变化的相图; (c)库仑力对Na2–xRuO3材料自有序过程的机理演示[23]

    Figure 8.  (a) XRD patterns tested in situ during the first cycle of Na2RuO3 with the corresponding cycling curve; (b) phase diagram as determined from the in situ experiment as a function of the sodium content; (c) coulombic forces and resultant self-ordering in Na2–xRuO3[23].

    图 9  (a) O3-NaFeO2和(b) O3-NaCrO2电极在不同充电截止电压的充放电曲线[26,27]; (c)充电至高电压时Na1–xCrO2材料模拟和测试的XRD 图谱; (d) NaxFeO2材料在钠离子脱出过程的相图和铁迁移示意图[28]; (e)脱钠过程中过渡金属离子迁移机理示意图[29]

    Figure 9.  Charge-discharge curves of (a) NaFeO2 and (b) NaCrO2 cathode[26,27]; (c) simulated and observed XRD patterns of Na1–xCrO2 cathode charged to high voltage; (d) scheme of phase evolution and iron migration upon sodium extraction in NaxFeO2[28]; (e) a proposed mechanism of Men+ (Metal ion) migration process on the desodiated process[29].

    图 10  充放电过程中O3型材料的结构演变汇总[30]

    Figure 10.  Summary of structure evolution for O3-type materials during the charge-discharge process[30].

    图 11  (a) P2-Na2/3Ni1/3Mn2/3O2的充放电曲线; (b) P2-Na2/3Ni1/3Mn2/3O2首周充电过程中的原位XRD图谱[32]

    Figure 11.  (a) Charge-discharge curve of P2-Na2/3Ni1/3Mn2/3O2; (b) XRD patterns measured during the first charge of the P2-Na2/3Ni1/3Mn2/3O2 cathode in situ cell[32].

    图 12  (a) P2-Na2/3Ni1/3Mn2/3O2的典型充电曲线; (b) P2-NaδNi1/3Mn2/3O2层内三棱柱位置钠离子/空位有序排布示意图(蓝色球代表占据Nae位钠离子, 粉色球代表占据Naf位钠离子)[33]

    Figure 12.  (a) Typical charge profiles of P2-Na2/3Ni1/3Mn2/3O2; (b) in-plane Na+/vacancy orderings of P2-NaδNi1/3Mn2/3O2 in the triangular lattice (blue balls: Na-ions on Nae sites, pink balls: Na-ions on Naf sites) [33].

    图 13  (a) P2-Na2/3Ni1/3Mn2/3O2和(b) P2-Na2/3Ni1/3Mn1/3Ti1/3O2电极在2.5—4.3 V电压范围内首周充电过程中的原位XRD图谱[34]

    Figure 13.  In situ XRD patterns of (a) P2-Na2/3Ni1/3Mn2/3O2 and (b) P2-Na2/3Ni1/3Mn1/3Ti1/3O2 electrodes during the first charge between 2.5 and 4.3 V[34].

    图 14  P2-Na2/3Ni1/3Mn2/3O2电极在1.5—4.0 V电压范围内的首周充放电曲线[35]

    Figure 14.  Initial charge-discharge curves of P2-Na2/3Ni1/3Mn2/3O2 in the voltage of 1.5–4.0 V[35].

    图 15  (a) P2相过渡金属层可能滑移的方向γ; (b)通过γ滑移P2相向O2相的转变示意图; (c)通过γ滑移P2相向OP4相的转变示意图. 晶体结构观察方向为[100], 钠位为黄色多面体, 过渡金属位于紫色八面体, 结构示意图中没有考虑晶胞参数的变化[19]

    Figure 15.  (a) P2 phase TM layer displacement vectors γ; (b) phase transitions from P2 to O2 via shifting γ; (c) phase transitions from P2 o OP4 via shifting γ. All structures viewed along [100] direction, all cell parameters changes have been ignored and TM octahedra are shown in purple and all Na sites in yellow[19].

    图 16  (a) (b) P2-和P3-Na0.6Li0.2Mn0.8O2正极材料钠离子脱嵌过程中的拓扑保护机制[40]

    Figure 16.  (a)(b) Topological protection mechanism during Na-ion deintercalation of P2-and P3-Na0.6Li0.2Mn0.8O2[40].

    图 17  充放电过程中P2型材料的结构演变汇总[30]

    Figure 17.  Summary of structure evolution for P2-type materials during the charge-discharge process[30].

    图 18  (a) Na0.66Li0.22Ti0.78O2电极在0.1 C倍率下0.4—2.5 V电压范围内的充放电曲线; (b) Na0.66Li0.22Ti0.78O2电极在C/7倍率下首周充放电过程中的原位XRD图谱[41]; (c) Na0.6Cr0.6Ti0.4O2电极在0.1 C倍率下0.5—2.5 V电压范围内的首周充放电曲线[42]; (d) Na0.6Cr0.6Ti0.4O2电极在C/5倍率下首周充放电过程中的原位XRD图谱[42]

    Figure 18.  (a) The discharge-charge curves of Na0.66Li0.22Ti0.78O2 at a current rate of 0.1 C (10.6 mA/g) in the voltage range of 0.4–2.5 V; (b) in situ XRD patterns collected during the first discharge-charge of the Na0.66Li0.22Ti0.78O2 electrode under a current rate of C/7[41]; (c) the first discharge-charge curve of Na0.6Cr0.6Ti0.4O2 in the voltage range of 0.5–2.5 V; (d) in situ XRD patterns collected during the first discharge-charge of the Na0.6Cr0.6Ti0.4O2 electrode under a current rate of C/5[42].

    图 19  O3-Nax[Ni0.33Fe0.33Mn0.33]O2在(a) 2.0—4.0 V和(b) 2.0—4.3 V之间同步辐射原位XRD测试结果以及充放电曲线[57]

    Figure 19.  In situ XRD patterns tested during cycling of NaxNi1/3Fe1/3Mn1/3O2 electrode in the voltage range of (a) 2.0–4.0 V and (b) 2.0–4.3 V[57].

    图 20  (a) NaNi0.5Mn0.4Ti0.1O2和(b) NaNi0.4Cu0.1Mn0.4Ti0.1O2电极在2.0—4.5 V电压范围内的原位XRD图谱[63]

    Figure 20.  In situ XRD patterns of (a) NaNi0.5Mn0.4Ti0.1O2 and (b) NaNi0.4Cu0.1Mn0.4Ti0.1O2 electrode in the voltage range of 2.0–4.5 V[63]

    图 21  (a)高熵构型稳定O3结构的机理阐释[68]; (b) NaNi0.6Fe0.25Mn0.15O2材料在2.0—4.2 V电压范围内的原位XRD图谱和(c)结构演变示意图[69]

    Figure 21.  (a) Possible mechanism of high-entropy composition in facilitating layered O3-type structure[68]; in situ XRD patterns of (b) NaNi0.6Fe0.25Mn0.15O2 electrode in the voltage range of 2.0–4.2 V and (c) schematic of structural evolution[69].

    图 22  (a)P2-和(c)O3-Na2/3Fe2/3Mn1/3O2 样品的XRD 谱和SEM图片;(b) P2-和(d)O3- Na2/3Fe2/3Mn1/3O2 样品前两周在1.5—4.2 V电压范围内的充放电曲线对比[71]

    Figure 22.  XRD patterns and SEM images of (a) P2- and (c) O3- Na2/3Fe2/3Mn1/3O2 samples; comparison of charge-discharge capacity of (b) P2- and (d) O3- Na2/3Fe2/3Mn1/3O2 within the 1 st and 2 nd cycles in the voltage range of 1.5–4.2 V[71].

    图 23  不同冷却方式对材料晶体结构中空位的影响示意图[74]

    Figure 23.  Schematic illustration of the effects of different cooling methods on the vacancies of the crystal structures[74].

    表 1  常见的结构对应的空间群和原子坐标

    Table 1.  The space groups and corresponding atomic positions of reported structures.

    结构空间群
    (代号)
    原子占位
    NaeNafNaMO
    O3${R}\bar{3}{m}$
    (167)
    3b
    (0, 0, 1/2)
    3a
    (0, 0, 0)
    6c
    (0, 0, ~0.27)
    O'3C2/m
    (12)
    2d
    (0, 1/2, 1/2)
    2a
    (0, 0, 0)
    4i
    (~0.28, 0, ~0.8)
    P3R3m
    (160)
    3a
    (0, 0, ~0.17)
    3a
    (0, 0, 0)
    3a
    (0, 0, ~0.4)
    P2P63/mmc
    (194)
    2d
    (2/3, 1/3, 1/4)
    2b
    (0, 0, 1/4)
    2a
    (0, 0, 0)
    4f
    (1/3, 2/3, ~0.09)
    O2P63mc
    (186)
    2b
    (1/3, 2/3, ~0.24)
    2b
    (2/3, 1/3, 0)
    2b
    (2/3, 1/3, ~0.39)
    DownLoad: CSV
    Baidu
  • [1]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 67 120601Google Scholar

    Lu Y X, Zhao C L, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [2]

    Sun Y, Guo S, Zhou H 2019 Energy Environ Sci. 12 825Google Scholar

    [3]

    Kubota K, Kumakura S, Yoda Y, Kuroki K, Komaba S 2018 Advan. Energy Mater. 8 1703415Google Scholar

    [4]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X 2019 Small 0 1805381

    [5]

    Kim S W, Seo D H, Ma X, Ceder G, Kang K 2012 Advan. Energy Mater. 2 710Google Scholar

    [6]

    Kim H, Park I, Lee S, Kim H, Park K Y, Park Y U, Kim H, Kim J, Lim H D, Yoon W S, Kang K 2013 Chem. Mater. 25 3614Google Scholar

    [7]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Advan. Energy Mater. 8 1702869Google Scholar

    [8]

    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B 2013 Angew. Chem. Int. Ed. 52 1964Google Scholar

    [9]

    Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J 2014 Angew. Chem. Int. Ed. 53 5892Google Scholar

    [10]

    Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu Y S, Chen L 2017 Small 13 1701835Google Scholar

    [11]

    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y S, Maier J, Yu Y 2018 Mater. Today 21 960Google Scholar

    [12]

    Delmas C, Fouassier C, Hagenmuller P 1980 Physica B+C 99 81Google Scholar

    [13]

    胡勇胜, 陆雅翔, 陈立泉 2020 钠离子电池科学与技术 (北京: 科学出版社) 第20页

    Hu Y S, Lu Y X, Chen L Q 2020 Na-ion batteries:science and technology (Beijing: Science Press) p20 (in Chinese)

    [14]

    Mortemard de Boisse B, Cheng J H, Carlier D, Guignard M, Pan C J, Bordère S, Filimonov D, Drathen C, Suard E, Hwang B-J, Wattiaux A, Delmas C 2015 J. Mater. Chem. A 3 10976Google Scholar

    [15]

    Mortemard de Boisse B, Liu G, Ma J, Nishimura S I, Chung S C, Kiuchi H, Harada Y, Kikkawa J, Kobayashi Y, Okubo M, Yamada A 2016 Nat. Commun. 7 11397Google Scholar

    [16]

    Nanba Y, Iwao T, Boisse B M d, Zhao W, Hosono E, Asakura D, Niwa H, Kiuchi H, Miyawaki J, Harada Y, Okubo M, Yamada A 2016 Chem. Mater. 28 1058Google Scholar

    [17]

    Perez A J, Batuk D, Saubanère M, Rousse G, Foix D, McCalla E, Berg E J, Dugas R, H. W. van den Bos K, Doublet M L, Gonbeau D, Abakumov A, Tendeloo G, Tarascon J-M 2016 Chem. Mater. 28 8278Google Scholar

    [18]

    Zhao C, Wang Q, Yao Z, Wang J, Sanchez-Lengeling B, Ding F, Qi X, Lu Y, Bai X, Li B, Li H, Aspuru-Guzik A, Huang X, Delmas C, Wagemaker M, Chen L, Hu Y S 2020 Science 370 708

    [19]

    Liu J, Kan W H, Ling C D 2021 J. Power Sources 481 229139Google Scholar

    [20]

    Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I 2012 Inorg. Chem. 51 6211Google Scholar

    [21]

    Sathiya M, Jacquet Q, Doublet M-L, Karakulina O M, Hadermann J, Tarascon J M 2018 Advan. Energy Mater. 8 1702599Google Scholar

    [22]

    Croguennec L, Pouillerie C, Mansour A N, Delmas C 2001 J. Mater. Chem. 11 131Google Scholar

    [23]

    Mortemard de Boisse B, Reynaud M, Ma J, Kikkawa J, Nishimura S I, Casas-Cabanas M, Delmas C, Okubo M, Yamada A 2019 Nat. Commun. 10 2185Google Scholar

    [24]

    Maazaz A, Delmas C, Hagenmuller P 1983 J. Incl. Phenom. 1 45Google Scholar

    [25]

    Didier C, Guignard M, Denage C, Szajwaj O, Ito S, Saadoune I, Darriet J, Delmas C 2011 Electrochem. Solid-State Lett. 14 A75Google Scholar

    [26]

    Kobota K, Ikeuchi I, Nakayama T, Takei C, Yabuuchi N, Shiiba H, Nakayama M, Komaba S 2014 J. Phys. Chem. C 119 166

    [27]

    Yabuuchi N, Komaba S 2014 Sci. Techn. Advan. Mater. 15 043501Google Scholar

    [28]

    Silván B, Gonzalo E, Djuandhi L, Sharma N, Fauth F, Saurel D 2018 J. Mater. Chem. A 6 15132Google Scholar

    [29]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [30]

    赵成龙 2020 博士学位论文 (北京: 中国科学院大学)

    Zhao C L 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [31]

    Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q 2014 Chin Phys B 23

    [32]

    Lu Z, Dahn J R 2001 J. Electrochem. Soc. 148 A1225Google Scholar

    [33]

    Lee D H, Xu J, Meng Y S 2013 Phys. Chem. Chem. Phys. 15 3304Google Scholar

    [34]

    Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L, Guo Y G 2018 Sci. Adv. 4 eaar6018Google Scholar

    [35]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [36]

    Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S 2016 Angew. Chem. Int. Ed. 55 12760Google Scholar

    [37]

    Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X, Delmas C, Chen L 2019 Joule 3 503Google Scholar

    [38]

    Bai X, Sathiya M, Mendoza-Sánchez B, Iadecola A, Vergnet J, Dedryvère R, Saubanère M, Abakumov A M, Rozier P, Tarascon J-M 2018 Advan. Energy Mater. 8 1802379

    [39]

    Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S 2014 J. Mater. Chem. A 2 16851Google Scholar

    [40]

    Gao A, Zhang Q, Li X, Shang T, Tang Z, Lu X, Luo Y, Ding J, Kan W H, Chen H, Yin W, Wang X, Xiao D, Su D, Li H, Rong X, Yu X, Yu Q, Meng F, Nan C, Delmas C, Chen L, Hu Y, Gu L, 2021 Nat. Sustain. 5 214Google Scholar

    [41]

    Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X Q, Chen L, Huang X 2013 Nat. Commun. 4 2365Google Scholar

    [42]

    Wang Y, Xiao R, Hu Y S, Avdeev M, Chen L 2015 Nat. Commun. 6 6954Google Scholar

    [43]

    Shanmugam R, Lai W 2014 ECS Electrochem. Lett. 3 A23Google Scholar

    [44]

    Yu H, Ren Y, Xiao D, Guo S, Zhu Y, Qian Y, Gu L, Zhou H 2014 Angew. Chem. Int. Ed. 53 8963Google Scholar

    [45]

    Guo S, Liu P, Sun Y, Zhu K, Yi J, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 11701Google Scholar

    [46]

    Wang P F, Yao H R, Zuo T T, Yin Y X, Guo Y G 2017 Chem. Commun. 53 1957Google Scholar

    [47]

    丁飞翔, 高飞, 容晓晖, 杨凯, 陆雅翔, 胡勇胜 2019 物理化学学报 36 1904022Google Scholar

    Ding F X, Gao F, Rong X H, Yang K, Lu Y X, Hu Y S 2019 Acta Phys-Chim Sin. 36 1904022Google Scholar

    [48]

    BRACONNIER J J, DELMAS C, HAGENMULLER 1982 Mat. Res. Bull. 17 993Google Scholar

    [49]

    Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J Solid State Chem 3 1Google Scholar

    [50]

    Ma X, Chen H, Ceder G 2011 J Electrochem Soc 158 A1307Google Scholar

    [51]

    Takeda Y, Nakahara K, Nishijima M, Imanishi N, Yamamoto O 1994 Mater Res Bull 29 659Google Scholar

    [52]

    Braconnier J J, Delmas C, Fouassier C, Hagenmuller P 1980 Mat. Res. Bull. 15 1797Google Scholar

    [53]

    Han M H, Gonzalo E, Casas-Cabanas M, Rojo T 2014 J Power Sources 258 266Google Scholar

    [54]

    Wang L, Wang J, Zhang X, Ren Y, Zuo P, Yin G, Wang J 2017 Nano Energy 34 215Google Scholar

    [55]

    Kim D, Lee E, Slater M, Lu W, Rood S, Johnson C S 2012 Electrochem Commun 18 66Google Scholar

    [56]

    Linqin M, Xinguo Q, Yongsheng H, Hong L, Liquan C, Xuejie H J E S S 2016 Energy Storage Sci Techn 5 324Google Scholar

    [57]

    Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun C J, Wen J, Wang J, Miller D, Amine K, Ma Z 2016 Advan. Energy Mater. 6 1601306Google Scholar

    [58]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 ACS Appl. Mater. Interfaces 7 8585Google Scholar

    [59]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 Appl. Mater. Interfaces 7 8585

    [60]

    Maletti S, Sarapulova A, Schokel A, Mikhailova D 2019 ACS Appl. Mater. Interfaces 11 33923Google Scholar

    [61]

    Wang P F, Yao H R, Liu X Y, Zhang J N, Gu L, Yu X Q, Yin Y X, Guo Y G 2017 Advan. Mater. 29 1700210Google Scholar

    [62]

    Yao H R, Wang P F, Gong Y, Zhang J, Yu X, Gu L, OuYang C, Yin Y X, Hu E, Yang X-Q, Stavitski E, Guo Y, Wan L 2017 J. Am. Chem. Soc. 139 8440Google Scholar

    [63]

    Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F, Chakir M, Tarascon J M 2019 Advan. Energy Mater. 9 1901785Google Scholar

    [64]

    Mariyappan S, Marchandier T, Rabuel F, Iadecola A, Rousse G, Morozov A V, Abakumov A M, Tarascon J-M 2020 Chem. Mater. 32 1657Google Scholar

    [65]

    Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 J Mater Chem A 9 12830Google Scholar

    [66]

    Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B 2021 Energy Envir. Sci. 14 2883Google Scholar

    [67]

    Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, Biasi L, Kubel C, Brezesinski T, Bhattacharya S, Hahn H, Breitung B 2018 Nat. Commun. 9 3400Google Scholar

    [68]

    Zhao C, Ding F, Lu Y, Chen L, Hu Y S 2020 Angew. Chem. Int. Ed. Engl. 59 264Google Scholar

    [69]

    Ding F, Zhao C, Zhou D, Meng Q, Xiao D, Zhang Q, Niu Y, Li Y, Rong X, Lu Y, Chen L, Hu Y S 2020 Energy Storage Mater. 30 420

    [70]

    Zhou Q, Li Y Q, Tang F, Li K X, Rong X H, Lu Y X, Chen L Q, Hu Y S 2021 Chin. Phys. Lett. 38 076501Google Scholar

    [71]

    Gonzalo E, Han M H, López del Amo J M, Acebedo B, Casas-Cabanas M, Rojo T 2014 J. Mater. Chem. A 2 18523Google Scholar

    [72]

    Parant J P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J. Solid State Chem. 3 1Google Scholar

    [73]

    Paulsen J M, Dahn J R 1999 Solid State Ionics 126 3Google Scholar

    [74]

    Liu X, Zhong G, Xiao Z, Zheng B, Zuo W, Zhou K, Liu H, Liang Z, Xiang Y, Chen Z, Ortiz G, Fu R, Yang Y 2020 Nano Energy 76 104997Google Scholar

    [75]

    Ding F, Meng Q, Yu P, Wang H, Niu Y, Li Y, Yang Y, Rong X, Liu X, Lu Y, Chen L, Hu Y S 2021 Adv. Funct. Mater. 31 2001120

    [76]

    Guo K S, Lu Y X, Wang H L, Ma X B, Li Z Y, Hu Y S, Dongfeng Chen 2019 Chin. Phys. B 28 68203Google Scholar

    [77]

    Fei Xie  Y L, Liquan Chen , Hu Y S 2021 Chin. Phys. Lett. 38 118401Google Scholar

    [78]

    Zhao C, Yao Z, Wang Q, Li H, Wang J, Liu M, Ganapathy S, Lu Y, Cabana J, Li B, Bai X, Aspuru-Guzik A, Wagemaker M, Chen L, Hu Y S 2020 J. Am. Chem. Soc. 142 5742Google Scholar

    [79]

    Liang X, Yu T Y, Ryu H H, Sun Y-K 2022 Energy Storage Mater. 47 515

  • [1] Zhou Xuan-Chi, Li Hai-Fan. Research on the electronic phase transitions in strongly correlated oxides and multi-field regulation. Acta Physica Sinica, 2024, 73(11): 117102. doi: 10.7498/aps.73.20240289
    [2] Ran Pei-Lin, Wu Kang, Zhao En-Yue, Wang Fang-Wei, Wu Zhi-Min. Enhancing reversible capacity and cycling stability of Li1.2Ni0.13Fe0.13Mn0.54O2 by inducing low Li/Ni misalignment through Mo doping. Acta Physica Sinica, 2024, 73(2): 028201. doi: 10.7498/aps.73.20231361
    [3] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] Xu Wei-Liang, Dang Rong-Bin, Yang Yang, Guo Qiu-Bo, Ding Fei-Xiang, Han Shuai, Tang Xiao-Han, Liu Yuan, Zuo Zhan-Chun, Wang Xiao-Qi, Yang Rui, Jin Xu, Rong Xiao-Hui, Hong Juan, Xu Ning, Hu Yong-Sheng. Magnesium doping improved characteristics of high voltage cycle of layered cathode of sodium ion battery. Acta Physica Sinica, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [5] Liu Qiang, Ni Yao, Liu Lu, Sun Lin, Liu Jia-Qi, Xu Wen-Tao. Artificial synapses based on layered multi-component metal oxides. Acta Physica Sinica, 2022, 71(14): 148501. doi: 10.7498/aps.71.20220303
    [6] Chen Si-Yu, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical research of two-dimensional germanether in sodium-ion battery. Acta Physica Sinica, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [7] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [8] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [9] Lin Chuan-Jin, Zheng Feng, Zhu Zi-Zhong. Electronic structures and Li diffusion in cathode material Li2FeO2 of Li-ion batteries. Acta Physica Sinica, 2019, 68(15): 157201. doi: 10.7498/aps.68.20190213
    [10] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He. Research progress of metal-insulator phase transition in VO2 induced by electric field. Acta Physica Sinica, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [11] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [12] Lu Ya-Xiang, Zhao Cheng-Long, Rong Xiao-Hui, Chen Li-Quan, Hu Yong-Sheng. Research progress of materials and devices for room-temperature Na-ion batteries. Acta Physica Sinica, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [13] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [14] Ma Hao, Liu Lei, Lu Xue-Sen, Liu Su-Ping, Shi Jian-Ying. Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery. Acta Physica Sinica, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [15] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [16] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng. Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure. Acta Physica Sinica, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [17] Ren Xiao-Dong, Liu Jian-Jun, Zhang Wen-Qing. Strain effect on the intercalation potential of the layered Mn-contained lithium ion batteries cathode materials: a first principles method. Acta Physica Sinica, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [18] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [19] Yue Min, Hu She-Jun, Hou Xian-Hua, Liang Qi, Peng Wei. Preparation and characterization of positive materials LiMn1-xFexPO4(0x<1) for lithium ion batteries. Acta Physica Sinica, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [20] Ouyang Chu-Ying, Hu Guo-Jin. Influence of surface effect to the performance of LiMn2O4 cathode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
Metrics
  • Abstract views:  22178
  • PDF Downloads:  1076
  • Cited By: 0
Publishing process
  • Received Date:  18 February 2022
  • Accepted Date:  28 March 2022
  • Available Online:  19 May 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map