Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter

Liu Chang-Wen Zhou Xun Yue Wen-Jin Wang Ming-Tai Qiu Ze-Liang Meng Wei-Li Chen Jun-Wei Qi Juan-Juan Dong Chao

Citation:

Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter

Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hybrid polymer-based solar cells (HPSCs) that use conjugate polymers as electron donor (D) and inorganic semiconductor nanocrystals as electron acceptor (A) are novel photovoltaic devices. HPSCs integrate the properties of organic polymer (flexibility, ease of film formation, high absorption coefficient) and inorganic nanostructures (high electron mobility, high electron affinity, and good stability), and have the extra advantages, such as the rich sources of synthesized nanostructures by wet chemistry, tunable and complementary properties of assembled components, solution-processibility on a large scale at low cost and light-weight, etc. Amongst various inorganic semiconductor materials, the nanostructured metal oxides are the promising electron acceptors for HPSCs, because they are environment-friendly, transparent in visible spectrum and easy to be synthesized. After a brief introduction to the current research status, working principles, device architecture, steady-state and dynamic characterizations of HPSCs, this paper mainly reviews our recent research advances in the HPSCs using ZnO and TiO2 nanostructures as main electron acceptor and transporter, with emphasis on the theoretical models for charge carrier transport dynamics, design and preparation of efficient materials and devices, and the device performance related with nanostructural characteristics. Finally, the main challenges in the development of efficient HPSCs in basic researches and practical applications are also discussed. The main conclusions from our studies are summarized as follows: (i) IMPS and IMVS are powerful dynamic photoelectrochemical methods for studying the charge transport dynamics in HPSCs, and our theoretical models enable the IMPS to serve as an effective tool for the mechanistic characterization and optimization of HPSC devices. (ii) Using a multicomponent photoactive layer with complementary properties is an effective strategy to achieve efficient HPSCs. (iii) Using the complementary property of components, enhancing the dissociation efficiency of excitons, and improving the transport properties of the acceptor channels with reduced energy loss to increase collection efficiency all are the effective measures to access a high photocurrent generation in HPSCs. (iv) The band levels of components in the photoactive layer of HPSCs are aligned into type II heterojunctions, in which the nanostructured component with the lowest conduction band edge acts as the main acceptor/transporter; the maximum open-circuit voltage (Voc) in HPSCs is determined by the energy difference between the highest occupied molecular orbital (HOMO) level of conjugated polymer and the conduction band edge of the main acceptor, but the Voc in practical devices correlates strongly with the quasi-Fermi levels of the electrons in the main acceptor and the holes in the polymer. While passivating the surface defects on the main acceptor, increasing spatial e-h separation, and enhancing the electron density in conduction band of the main acceptor will facilitate the increase in Voc. (v) There is no direct correlation among Voc, photogenerated voltage (Vph) and electron lifetime (τe), and they may change in the same or the opposite trend when the same or different factors affect them, therefore one should get insight into the intrinsic factors that influence them when discussing the changes in Voc, V_{ph} and τe that are subject to nanostructural characteristics.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274307, 11474286), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91333121), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51202002), and the Natural Science Foundation of Anhui Province, China (Grant No. 1308085ME70).
    [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2013 Prog. Photovolt. Res. Appl. 21 827

    [2]

    Lewis N S 2007 Science 315 798

    [3]

    Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533

    [4]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [5]

    Thompson B C, Fréchet J M J 2008 Angew. Chem.-Int. Edit. 47 58

    [6]

    Huang Y, Kramer E J, Heeger A J, Bazan G C 2014 Chem. Rev. 114 7006

    [7]

    Heeger A J 2014 Adv. Mater. 26 10

    [8]

    Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y 2013 Adv. Mater. 25 6642

    [9]

    Krebs F C, Fyenbo J, Tanenbaum D M, Gevorgyan S A, Andriessen R, van Remoortere B, Galagan Y, Jorgensen M 2011 Energy Environ. Sci. 4 4116

    [10]

    Service R F 2011 Science 332 293

    [11]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [12]

    Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A 2009 Nano Lett. 9 4250

    [13]

    Dayal S, Kopidakis N, Olson D C, Ginley D S, Rumbles G 2009 Nano Lett. 10 239

    [14]

    Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Grätzel M 2010 Nano Lett. 10 2609

    [15]

    Im S H, Lim C-S, Chang J A, Lee Y H, Maiti N, Kim H-J, Nazeeruddin M K, Grätzel M, Seok S I 2011 Nano Lett. 11 4789

    [16]

    Chang J A, Im S H, Lee Y H, Kim H J, Lim C S, Heo J H, Seok S I 2012 Nano Lett. 12 1863

    [17]

    Liu C, Qiu Z, Li F, Meng W, Yue W, Zhang F, Qiao Q, Wang, M 2014 Nano Energy DOI: 10.1016/j.nanoen.2014.09.028

    [18]

    Zhou Y, Eck M, Krger M 2010 Energy Environ. Sci. 3 1851

    [19]

    Reiss P, Couderc E, De Girolamo J, Pron A 2011 Nanoscale 3 446

    [20]

    Xu T, Qiao Q 2011 Energy Environ. Sci. 4 2700

    [21]

    Moule A J, Chang L, Thambidurai C, Vidu R, Stroeve P 2012 J. Mater. Chem. 22 2351

    [22]

    Wright M, Uddin A 2012 Sol Energy Mater. Sol. Cells 107 87

    [23]

    Fan X, Zhang M, Wang X, Yang F, Meng X 2013 J. Mater. Chem. A 1 8694

    [24]

    He M, Qiu F, Lin Z 2013 J. Phys. Chem. Lett. 4 1788

    [25]

    Gao F, Ren S, Wang J 2013 Energy Environ. Sci. 6 2020

    [26]

    Li S S, Chen C W 2013 J. Mater. Chem. A 1 10574

    [27]

    Patel J, Mighri F, Ajji A, Chaudhuri T K 2014 Nano Energy 5 36

    [28]

    Freitas J N, Goncalves A S, Nogueira A F 2014 Nanoscale 6 6371

    [29]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201

    [30]

    Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605

    [31]

    Gregg B A 2003 J. Phys. Chem. B 107 4688

    [32]

    Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I 1997 J. Phys. Chem. B 101 10281

    [33]

    Chen C, Peng R, Wu H, Wang M 2009 J. Phys. Chem. C 113 12608

    [34]

    de Jongh P E, Vanmaekelbergh D 1996 Phys. Rev. Lett. 77 3427

    [35]

    Haque S A, Tachibana Y, Klug D R, Durrant J R 1998 J. Phys. Chem. B 102 1745

    [36]

    Bisquert J, Zaban A, Salvador P 2002 J. Phys. Chem. B 106 8774

    [37]

    Kannan B, Castelino K, Majumdar A 2003 Nano Lett. 3 1729

    [38]

    Kirchartz T, Mattheis J, Rau U 2008 Phys. Rev. B 78 235320

    [39]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M 2010 J. Phys. Chem. C 114 13846

    [40]

    Potscavage W J Jr, Sharma A, Kippelen B 2009 Acc. Chem. Res. 42 1758

    [41]

    Qi B, Wang J 2013 Phys. Chem. Chem. Phys. 15 8972

    [42]

    Schilinsky P, Waldauf C, Hauch J, Brabec C J 2004 J. Appl. Phys. 95 2816

    [43]

    Wu F, Yue W, Cui Q, Liu C, Qiu Z, Shen W, Zhang H, Wang M 2012 Sol. Energy 86 1459

    [44]

    Bi D, Wu F, Qu Q, Yue W, Cui Q, Shen W, Chen R, Liu C, Qiu Z, Wang M 2011 J. Phys. Chem. C 115 3745

    [45]

    Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M 2013 J. Phys. Chem. C 117 5626

    [46]

    Wu F, Cui Q, Qiu Z, Liu C, Zhang H, Shen W, Wang M 2013 ACS Appl. Mater. Interfaces 5 3246

    [47]

    Rauh D, Wagenpfahl A, Deibel C, Dyakonov V 2011 Appl. Phys. Lett. 98 133301

    [48]

    Potscavage W J Jr, Yoo S, Kippelen B 2008 Appl. Phys. Lett. 93 193308

    [49]

    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca J V 2010 Phys. Rev. B 81 125204

    [50]

    Ruankham P, Macaraig L, Sagawa T, Nakazumi H, Yoshikawa S 2011 J. Phys. Chem. C 115 23809

    [51]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 93 163301

    [52]

    Jeong W I, Lee J, Park S Y, Kang J W, Kim J J 2011 Adv. Funct. Mater. 21 343

    [53]

    Liao K S, Yambem S D, Haldar A, Alley N J, Curran S A 2010 Energies 3 1212

    [54]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [55]

    Choi S, Potscavage W J, Kippelen B 2009 J. Appl. Phys. 106 054507

    [56]

    Dunn H K, Peter L M 2009 J. Phys. Chem. C 113 4726

    [57]

    Chen C, Wang M, Wang K 2009 J. Phys. Chem. C 113 1624

    [58]

    Geng H, Wang M, Han S, Peng R 2010 Sol. Energy Mater. Sol. Cells 94 547

    [59]

    Geng H, Guo Y, Peng R, Han S, Wang M 2010 Sol. Energy Mater. Sol. Cells 94 1293

    [60]

    Wu F, Shen W, Cui Q, Bi D, Yue W, Qu Q, Wang M 2010 J. Phys. Chem. C 114 20225

    [61]

    Peng R, Chen C, Shen W, Wang M, Guo Y, Geng H 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟 2009 58 6582]

    [62]

    Krger J, Plass R, Grätzel M, Cameron P J, Peter L M 2003 J. Phys. Chem. B 107 7536

    [63]

    Chen C, Wu F, Geng1 H, Shen W, Wang M 2011 Nanoscale Res. Lett. 6 350

    [64]

    Takanezawa K, Hirota K, Wei Q S, Tajima K, Hashimoto K 2007 J. Phys. Chem. C 111 7218

    [65]

    Lin Y Y, Chu T H, Li S S, Chuang C H, Chang C H, Su W F, Chang C P, Chu M W, Chen C W 2009 J. Am. Chem. Soc. 131 3644

    [66]

    Xi J, Wiranwetchayan O, Zhang Q, Liang Z, Sun Y, Cao G 2012 J. Mater Sci: Mater. Electron. 23 1657

    [67]

    Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Tao S, Wang M 2010 J. Mater. Chem. 20 7570

    [68]

    Yue W, Wu F, Liu C, Qiu Z, Cui Q, Zhang H, Gao F, Shen W, Qiao Q, Wang M 2013 Sol. Energy Mater. Sol. Cells 114 43

    [69]

    Ravirajan P, Peiró A M, Nazeeruddin M K, Graetzel M, Bradley D D C, Durrant J R, Nelson J 2006 J. Phys. Chem. B 110 7635

    [70]

    Lin Y Y, Lee Y Y, Chang L, Wu J J, Chen C W 2009 Appl. Phys. Lett. 94 063308

    [71]

    Liu Y, Scully S R, McGehee M D, Liu J, Luscombe C K, Fréchet J M J, Shaheen S E, Ginley D S 2006 J. Phys. Chem. B 110 3257

    [72]

    Qu Q, Geng H, Peng R, Cui Q, Gu X, Li F, Wang M 2010 Langmuir 26 9539

    [73]

    Greene L E, Law M, Yuhas B D, Yang P 2007 J. Phys. Chem. C 111 18451

    [74]

    Lee Y J, Davis R J, Lloyd M T, Provencio P P, Prasankumar R P, Hsu J W P 2010 IEEE J. Sel. Top. Quantum Electron. 16 1587

    [75]

    Wang L, Zhao D, Su Z, Li B, Zhang Z, Shen D 2011 J. Electrochem. Soc. 158 H804

    [76]

    Krger J, Bach U, Grätzel M 2000 Adv. Mater. 12 447

    [77]

    Goh C, Scully S R, McGehee M D 2007 J. Appl. Phys. 101 114503

    [78]

    Chen Z L, Zhang H, Du X H, Cheng X, Chen X G, Jiang Y Y, Yang B 2013 Energy Environ. Sci. 6 1597

    [79]

    Heeger H J, Sariciftci N S, Namdas E B (translated by Shuai Z G, Cao Y et al.) 2010 Semiconducting and Metallic Polymers (Beijing: Science Press) p17-28 (in Chinese) [Heeger H J, Sariciftci N S, Namdas E B (帅志刚, 曹镛等译)2010 半导性和金属性聚合物 (北京: 科学出版社)第17–28页]

    [80]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [81]

    Yin C, Pieper B, Stiller B, Kietzke T, Neher D 2007 Appl. Phys. Lett. 90 133502

    [82]

    Marsh R A, McNeill C R, Abrusci A, Campbell A R, Friend R H 2008 Nano Lett. 8 1393

    [83]

    Olson C, Shaheen S E, White M S, Mitchell W J, van Hest M F A M, Collins R T, Ginley D S 2007 Adv. Funct. Mater. 17 264

    [84]

    Schlichthörl G, Huang S Y, Sprague J, Frank A J 1997 J. Phys. Chem. B 101 8141

    [85]

    Adebanjo O, Maharjan P P, Adhikary P, Wang M, Yang S, Qiao Q 2013 Energy Environ. Sci. 6 3150

    [86]

    Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390

    [87]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670

    [88]

    Winder C, Sariciftci N S 2004 J. Mater. Chem. 14 1077

    [89]

    Bundgaard E, Krebs F C 2007 Sol. Energy Mater. Sol. Cells 91 954

    [90]

    Li Y 2012 Acc. Chem. Res. 45 723

  • [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2013 Prog. Photovolt. Res. Appl. 21 827

    [2]

    Lewis N S 2007 Science 315 798

    [3]

    Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533

    [4]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [5]

    Thompson B C, Fréchet J M J 2008 Angew. Chem.-Int. Edit. 47 58

    [6]

    Huang Y, Kramer E J, Heeger A J, Bazan G C 2014 Chem. Rev. 114 7006

    [7]

    Heeger A J 2014 Adv. Mater. 26 10

    [8]

    Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y 2013 Adv. Mater. 25 6642

    [9]

    Krebs F C, Fyenbo J, Tanenbaum D M, Gevorgyan S A, Andriessen R, van Remoortere B, Galagan Y, Jorgensen M 2011 Energy Environ. Sci. 4 4116

    [10]

    Service R F 2011 Science 332 293

    [11]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [12]

    Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A 2009 Nano Lett. 9 4250

    [13]

    Dayal S, Kopidakis N, Olson D C, Ginley D S, Rumbles G 2009 Nano Lett. 10 239

    [14]

    Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Grätzel M 2010 Nano Lett. 10 2609

    [15]

    Im S H, Lim C-S, Chang J A, Lee Y H, Maiti N, Kim H-J, Nazeeruddin M K, Grätzel M, Seok S I 2011 Nano Lett. 11 4789

    [16]

    Chang J A, Im S H, Lee Y H, Kim H J, Lim C S, Heo J H, Seok S I 2012 Nano Lett. 12 1863

    [17]

    Liu C, Qiu Z, Li F, Meng W, Yue W, Zhang F, Qiao Q, Wang, M 2014 Nano Energy DOI: 10.1016/j.nanoen.2014.09.028

    [18]

    Zhou Y, Eck M, Krger M 2010 Energy Environ. Sci. 3 1851

    [19]

    Reiss P, Couderc E, De Girolamo J, Pron A 2011 Nanoscale 3 446

    [20]

    Xu T, Qiao Q 2011 Energy Environ. Sci. 4 2700

    [21]

    Moule A J, Chang L, Thambidurai C, Vidu R, Stroeve P 2012 J. Mater. Chem. 22 2351

    [22]

    Wright M, Uddin A 2012 Sol Energy Mater. Sol. Cells 107 87

    [23]

    Fan X, Zhang M, Wang X, Yang F, Meng X 2013 J. Mater. Chem. A 1 8694

    [24]

    He M, Qiu F, Lin Z 2013 J. Phys. Chem. Lett. 4 1788

    [25]

    Gao F, Ren S, Wang J 2013 Energy Environ. Sci. 6 2020

    [26]

    Li S S, Chen C W 2013 J. Mater. Chem. A 1 10574

    [27]

    Patel J, Mighri F, Ajji A, Chaudhuri T K 2014 Nano Energy 5 36

    [28]

    Freitas J N, Goncalves A S, Nogueira A F 2014 Nanoscale 6 6371

    [29]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201

    [30]

    Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605

    [31]

    Gregg B A 2003 J. Phys. Chem. B 107 4688

    [32]

    Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I 1997 J. Phys. Chem. B 101 10281

    [33]

    Chen C, Peng R, Wu H, Wang M 2009 J. Phys. Chem. C 113 12608

    [34]

    de Jongh P E, Vanmaekelbergh D 1996 Phys. Rev. Lett. 77 3427

    [35]

    Haque S A, Tachibana Y, Klug D R, Durrant J R 1998 J. Phys. Chem. B 102 1745

    [36]

    Bisquert J, Zaban A, Salvador P 2002 J. Phys. Chem. B 106 8774

    [37]

    Kannan B, Castelino K, Majumdar A 2003 Nano Lett. 3 1729

    [38]

    Kirchartz T, Mattheis J, Rau U 2008 Phys. Rev. B 78 235320

    [39]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M 2010 J. Phys. Chem. C 114 13846

    [40]

    Potscavage W J Jr, Sharma A, Kippelen B 2009 Acc. Chem. Res. 42 1758

    [41]

    Qi B, Wang J 2013 Phys. Chem. Chem. Phys. 15 8972

    [42]

    Schilinsky P, Waldauf C, Hauch J, Brabec C J 2004 J. Appl. Phys. 95 2816

    [43]

    Wu F, Yue W, Cui Q, Liu C, Qiu Z, Shen W, Zhang H, Wang M 2012 Sol. Energy 86 1459

    [44]

    Bi D, Wu F, Qu Q, Yue W, Cui Q, Shen W, Chen R, Liu C, Qiu Z, Wang M 2011 J. Phys. Chem. C 115 3745

    [45]

    Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M 2013 J. Phys. Chem. C 117 5626

    [46]

    Wu F, Cui Q, Qiu Z, Liu C, Zhang H, Shen W, Wang M 2013 ACS Appl. Mater. Interfaces 5 3246

    [47]

    Rauh D, Wagenpfahl A, Deibel C, Dyakonov V 2011 Appl. Phys. Lett. 98 133301

    [48]

    Potscavage W J Jr, Yoo S, Kippelen B 2008 Appl. Phys. Lett. 93 193308

    [49]

    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca J V 2010 Phys. Rev. B 81 125204

    [50]

    Ruankham P, Macaraig L, Sagawa T, Nakazumi H, Yoshikawa S 2011 J. Phys. Chem. C 115 23809

    [51]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 93 163301

    [52]

    Jeong W I, Lee J, Park S Y, Kang J W, Kim J J 2011 Adv. Funct. Mater. 21 343

    [53]

    Liao K S, Yambem S D, Haldar A, Alley N J, Curran S A 2010 Energies 3 1212

    [54]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [55]

    Choi S, Potscavage W J, Kippelen B 2009 J. Appl. Phys. 106 054507

    [56]

    Dunn H K, Peter L M 2009 J. Phys. Chem. C 113 4726

    [57]

    Chen C, Wang M, Wang K 2009 J. Phys. Chem. C 113 1624

    [58]

    Geng H, Wang M, Han S, Peng R 2010 Sol. Energy Mater. Sol. Cells 94 547

    [59]

    Geng H, Guo Y, Peng R, Han S, Wang M 2010 Sol. Energy Mater. Sol. Cells 94 1293

    [60]

    Wu F, Shen W, Cui Q, Bi D, Yue W, Qu Q, Wang M 2010 J. Phys. Chem. C 114 20225

    [61]

    Peng R, Chen C, Shen W, Wang M, Guo Y, Geng H 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟 2009 58 6582]

    [62]

    Krger J, Plass R, Grätzel M, Cameron P J, Peter L M 2003 J. Phys. Chem. B 107 7536

    [63]

    Chen C, Wu F, Geng1 H, Shen W, Wang M 2011 Nanoscale Res. Lett. 6 350

    [64]

    Takanezawa K, Hirota K, Wei Q S, Tajima K, Hashimoto K 2007 J. Phys. Chem. C 111 7218

    [65]

    Lin Y Y, Chu T H, Li S S, Chuang C H, Chang C H, Su W F, Chang C P, Chu M W, Chen C W 2009 J. Am. Chem. Soc. 131 3644

    [66]

    Xi J, Wiranwetchayan O, Zhang Q, Liang Z, Sun Y, Cao G 2012 J. Mater Sci: Mater. Electron. 23 1657

    [67]

    Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Tao S, Wang M 2010 J. Mater. Chem. 20 7570

    [68]

    Yue W, Wu F, Liu C, Qiu Z, Cui Q, Zhang H, Gao F, Shen W, Qiao Q, Wang M 2013 Sol. Energy Mater. Sol. Cells 114 43

    [69]

    Ravirajan P, Peiró A M, Nazeeruddin M K, Graetzel M, Bradley D D C, Durrant J R, Nelson J 2006 J. Phys. Chem. B 110 7635

    [70]

    Lin Y Y, Lee Y Y, Chang L, Wu J J, Chen C W 2009 Appl. Phys. Lett. 94 063308

    [71]

    Liu Y, Scully S R, McGehee M D, Liu J, Luscombe C K, Fréchet J M J, Shaheen S E, Ginley D S 2006 J. Phys. Chem. B 110 3257

    [72]

    Qu Q, Geng H, Peng R, Cui Q, Gu X, Li F, Wang M 2010 Langmuir 26 9539

    [73]

    Greene L E, Law M, Yuhas B D, Yang P 2007 J. Phys. Chem. C 111 18451

    [74]

    Lee Y J, Davis R J, Lloyd M T, Provencio P P, Prasankumar R P, Hsu J W P 2010 IEEE J. Sel. Top. Quantum Electron. 16 1587

    [75]

    Wang L, Zhao D, Su Z, Li B, Zhang Z, Shen D 2011 J. Electrochem. Soc. 158 H804

    [76]

    Krger J, Bach U, Grätzel M 2000 Adv. Mater. 12 447

    [77]

    Goh C, Scully S R, McGehee M D 2007 J. Appl. Phys. 101 114503

    [78]

    Chen Z L, Zhang H, Du X H, Cheng X, Chen X G, Jiang Y Y, Yang B 2013 Energy Environ. Sci. 6 1597

    [79]

    Heeger H J, Sariciftci N S, Namdas E B (translated by Shuai Z G, Cao Y et al.) 2010 Semiconducting and Metallic Polymers (Beijing: Science Press) p17-28 (in Chinese) [Heeger H J, Sariciftci N S, Namdas E B (帅志刚, 曹镛等译)2010 半导性和金属性聚合物 (北京: 科学出版社)第17–28页]

    [80]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [81]

    Yin C, Pieper B, Stiller B, Kietzke T, Neher D 2007 Appl. Phys. Lett. 90 133502

    [82]

    Marsh R A, McNeill C R, Abrusci A, Campbell A R, Friend R H 2008 Nano Lett. 8 1393

    [83]

    Olson C, Shaheen S E, White M S, Mitchell W J, van Hest M F A M, Collins R T, Ginley D S 2007 Adv. Funct. Mater. 17 264

    [84]

    Schlichthörl G, Huang S Y, Sprague J, Frank A J 1997 J. Phys. Chem. B 101 8141

    [85]

    Adebanjo O, Maharjan P P, Adhikary P, Wang M, Yang S, Qiao Q 2013 Energy Environ. Sci. 6 3150

    [86]

    Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390

    [87]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670

    [88]

    Winder C, Sariciftci N S 2004 J. Mater. Chem. 14 1077

    [89]

    Bundgaard E, Krebs F C 2007 Sol. Energy Mater. Sol. Cells 91 954

    [90]

    Li Y 2012 Acc. Chem. Res. 45 723

  • [1] Sun Zhen, Lü Xiang, Li Sheng, An Zhong. Nonadiabatic molecular dynamics under adiabatic representation. Acta Physica Sinica, 2024, 73(14): 140201. doi: 10.7498/aps.73.20240401
    [2] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [4] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [5] Shi Ying, Li Yao, Zhou Hai-Tao, Chen Rui-Yun, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Real-time measurement of dynamic evolution of absorption and emission properties of chromophores in single conjugated polymer molecules. Acta Physica Sinica, 2019, 68(4): 048201. doi: 10.7498/aps.68.20181986
    [6] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [7] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [8] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [9] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [10] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [11] Xu Zhong-Hua, Chen Wei-Bing, Ye Wei-Qiong, Yang Wei-Feng. A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Acta Physica Sinica, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [12] Li Dong-Mei, Yuan Xiao-Juan, Zhou Jia-Qiang. Effects of intrachain disorder on polaron transport in conjugated polymer. Acta Physica Sinica, 2013, 62(16): 167202. doi: 10.7498/aps.62.167202
    [13] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [14] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [15] Zhou Chun-Lan, Li Xu-Dong, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physica Sinica, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [16] Yu Huang-Zhong, Wen Yuan-Xin. Influence of the thickness and cathode material on the performance of the polymer solar cell. Acta Physica Sinica, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [17] Xu Miao, Peng Jun-Biao. Effect of casting process of polymer active layer on performances of polymer solar cells. Acta Physica Sinica, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [18] Peng Rui-Xiang, Chen Chong, Shen Wei, Wang Ming-Tai, Guo Ying, Geng Hong-Wei. Amorphous/crystalline blend effects on the performance of polymer-based photovoltaic cells. Acta Physica Sinica, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [19] Liang Lin-Yun, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [20] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
Metrics
  • Abstract views:  7530
  • PDF Downloads:  704
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2014
  • Accepted Date:  27 November 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map