搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散

林传金 郑锋 朱梓忠

引用本文:
Citation:

锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散

林传金, 郑锋, 朱梓忠

Electronic structures and Li diffusion in cathode material Li2FeO2 of Li-ion batteries

Lin Chuan-Jin, Zheng Feng, Zhu Zi-Zhong
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理方法计算了锂离子电池正极材料Immm-Li2FeO2的声子谱、电子结构性质和Li扩散系数并与Li2MO2 (M = Co, Ni, Cu)材料进行对比. 计算结果显示, Immm-Li2FeO2材料具有结构稳定性, 计算结果呈铁磁性, 能带结构具有半金属的特征. Fe离子外层d电子呈低自旋态, 自旋极化P = 8.01%. 利用分波态密度分析了自旋向上和自旋向下的电子能带结构. 此外, 采用微动弹性带方法计算了各个方向上Li扩散的势垒, 结果表明Li离子比较容易先进行c轴方向的迁移, 迁移势垒为0.1 eV; 然后再沿ab轴方向迁移, 迁移势垒为0.21 eV, 而沿a轴方向迁移的势垒为0.39 eV. 这些势垒值比其他的Li2MO2 (M = Co, Ni, Cu)材料中的势垒值小, 也比其他Fe基Li离子电池正极材料中的势垒值更低, 意味着Li2FeO2中的Li离子将有更高的扩散系数, 这对Li2FeO2作为正极材料具有重要的意义.
    The electronic structures and lithium diffusion in the cathode material Immm-Li2FeO2 of lithium-ion batteries are calculated by the first-principles method based on the density functional theory. The calculated results show that Immm-Li2FeO2 is ferromagnetic, and the band structure indicates a semi-metal character. The d-electrons of Fe ions are in the low spin state, with a spin polarization of 8.01%. The spin-up and spin-down band structure are also analyzed by using the l-decomposed electronic density of states. Furthermore, the energy barriers for the lithium ion diffusion in different directions are calculated by the nudged elastic band method. For comparison, the potential barriers for the Li2MO2 (M = Co, Ni, Cu) are also calculated. The results suggest that it is easier for Li ion to diffuse in the c-axis directionof Li2FeO2, with an energy barrier of only 0.1 eV. The energy barrier is 0.21 eV for Li to diffuse in the ab-axis direction, while the diffusion barrier is 0.39 eV along the a-axis direction of Li2FeO2. All these values of energy barriers are lower than those in other Fe-based cathodes mentioned, indicating that the Li diffusion coefficient in Immm-Li2FeO2 should be larger than those of other materials, which also indicates that the Li2FeO2 is of great importance as cathode material.
      通信作者: 朱梓忠, zzhu@xmu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0202601)和福建省中青年教师教育科研项目(科技类, 批准号: JT180302)资助的课题.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0202601) and the Education and Research Project of Young and Middle-aged Teachers of Fujian Province (Science and Technology Class), China (Grant No. JT180302).
    [1]

    Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167Google Scholar

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587Google Scholar

    [3]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L Q 2018 Joule 2 1991Google Scholar

    [4]

    Goodenough J B 2018 Nature Electron. 1 204Google Scholar

    [5]

    Yamada A 2014 Mater. Res. Soc. 39 423Google Scholar

    [6]

    Robert A, Daniel W T, Fabio L M, Novak P, Bruce P G 2008 J. Am. Chem. Soc. 130 3554Google Scholar

    [7]

    Guo S P, Ma Z, Li J C, Xue H G 2017 J. Mater. Sci. 52 1469Google Scholar

    [8]

    Ramos-Sanchez G, Romero-Ibarra I C, Vazquez-Arenas J, Tapia C, Aguilar-Eseiza N, Gonzalez I 2017 Solid State Ionics 303 89Google Scholar

    [9]

    Kordatos A, Kuganathan N, Kelaidis N, Iyngaran P, Chroneos A 2018 Sci. Rep. 8 6754Google Scholar

    [10]

    Back C K, Yin R Z, Shin S J, Lee Y S, Choi W, Kim Y S 2012 J. Electrochem. Soc. 159 A887Google Scholar

    [11]

    Kang K, Morgan D, Ceder G 2009 Phys. Rev. B 79 014305Google Scholar

    [12]

    Lee H, Chang S K, Goh E Y, Jeong J Y, Lee J H, Kim H J, Cho J J, Hong S T 2008 Chem. Mater. 20 5Google Scholar

    [13]

    Rose E R, Pandian A S, Yan P F, Weker J N, Wang C M, Nanda J 2017 Chem. Mater. 29 2997Google Scholar

    [14]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [16]

    Kresse G, Jobert D 1999 Phys. Rev. B 59 1758

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [18]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [19]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [20]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901

    [21]

    Morgan D, van der Ven A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30Google Scholar

    [22]

    Urban A, Seo D H, Ceder G 2016 njp Computat. Mater. 2 16002

    [23]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [24]

    Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 112 9275

    [25]

    Zhao Y Q, Ma Q R, Liu Biao, Yu Z L, Cai M Q 2018 Phys. Chem. Chem. Phys. 20 14718Google Scholar

    [26]

    徐光宪, 王祥云 2010 物质结构 (北京: 科学出版社) 第725−727页

    Xu G X, Wang X Y 2010 Material Structure (Beijing: Science Press) pp725−727 (in Chinese)

    [27]

    Huang Z F, Meng X, Wang C Z, Sun Y, Chen G 2006 J.Power Sources 158 1394Google Scholar

    [28]

    Ramesha K, Seshadri R, Ederer C, He T, Subramanian M A 2004 Phys. Rev. B 70 214409Google Scholar

    [29]

    Krishna G, Dathar P, Sheppard D, Stevenson K J, Henkelman G 2011 Chem. Mater. 23 4032Google Scholar

    [30]

    Ouyang C, Shi S, Wang Z, Huang X, Chen L 2004 Phys. Rev. B 69 104303Google Scholar

    [31]

    Armstrong A R, Kuganathan N, Islam M S, Bruce P G 2011 J. Am. Chem. Soc. 133 13031Google Scholar

    [32]

    Kutner R 1981 Phys. Lett. A 81 239Google Scholar

    [33]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121Google Scholar

  • 图 1  Immm-Li2FeO2的3 × 3 × 1超原胞及Li迁移路径示意图

    Fig. 1.  The 3 × 3 × 1 supercell and the Li migration paths of Immm-Li2FeO2.

    图 2  Immm-Li2FeO2的声子谱

    Fig. 2.  Phonon-dispersions of Immm-Li2FeO2.

    图 3  Li2FeO2 $\left( {1\bar 11} \right)$面的总电荷密度图

    Fig. 3.  Total charge densities of Li2FeO2 $\left( {1\bar 11} \right)$.

    图 4  Li2FeO2 $\left( {1\bar 11} \right)$面的差分电荷密度图

    Fig. 4.  Deformation charge densities of Li2FeO2 $\left( {1\bar 11} \right)$.

    图 5  Li2FeO2自旋向上(a)和自旋向下(b)的能带结构图

    Fig. 5.  (a) Spin-up and (b) spin-down band structures of Li2FeO2.

    图 6  Li2FeO2的总态密度和O, Fe的分波态密度图

    Fig. 6.  Total density of states (DOS) of Li2FeO2 and partial density of states of O and Fe.

    图 7  Li2MO2 (M = Fe, Co, Ni, Cu)中Li+离子不同迁移路径的势垒 (a) Path A; (b) path AB; (c) path C (P1—P2)

    Fig. 7.  Energy barriers for different Li+ migration paths in Li2MO2 (M = Fe, Co, Ni, Cu): (a) Path A; (b) path AB; (c) path C (P1–P2).

    图 8  Li2FeO2中(a) path AB和(b) path A方向Li+离子扩散系数随温度的变化

    Fig. 8.  Temperature dependence of Li ion diffusion coefficients along (a) path AB and (b) path A in Li2FeO2.

    表 1  GGA和GGA + U下Li2NiO2的扩散势垒

    Table 1.  Li2NiO2 diffusion barriers under GGA and GGA + U.

    跃迁路径
    Path A Path AB Path C
    Li2NiO2迁移势垒/eV GGA 0.40 0.41 0.69
    GGA + U 0.46 0.41 0.89
    下载: 导出CSV

    表 2  Immm-Li2FeO2的结构参数与键长

    Table 2.  Structural parameters and the bond lengths of Immm-Li2FeO2.

    a b c Bond length/Å
    Fe—O Li—OA Li—OB
    Li2FeO2 2.923 3.713 9.514 2.010 2.016 1.954
    Li2NiO2[11] 2.808 3.803 8.936
    Li2CuO2[9] 2.789 3.662 9.573
    下载: 导出CSV

    表 3  不同电子自旋组态的Li2FeO2的总结合能与Fe2+磁矩

    Table 3.  Total cohesive energies and magnetic moments under different spin configurations of Li2FeO2.

    电子自旋组态 Li2FeO2结合能(eV/分子式) Fe2+磁矩/μB
    高自旋 –3.29 3.92
    低自旋 –3.30 2.01
    非自旋 –3.22 0
    下载: 导出CSV

    表 4  不同跃迁路径的Li2MO2 (M = Fe, Co, Ni, Cu)的跃迁势垒与跃迁步长

    Table 4.  Energy barriers and distance for different Li+ migration paths in Li2FeO2

    Li2FeO2 Li2CoO2 Li2NiO2 Li2CuO2
    Path A 跃迁势垒/eV 0.39 0.45 0.40 0.61
    跃迁步长/Å 3.60 2.98 2.98 3.32
    Path AB 跃迁势垒/eV 0.21 0.43 0.41 0.36
    跃迁步长/Å 3.04 2.76 2.70 2.84
    Path C 跃迁势垒/eV 0.10 0.51 0.69 0.78
    跃迁步长/Å 4.32 3.50 3.62 4.12
    下载: 导出CSV
    Baidu
  • [1]

    Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167Google Scholar

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587Google Scholar

    [3]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L Q 2018 Joule 2 1991Google Scholar

    [4]

    Goodenough J B 2018 Nature Electron. 1 204Google Scholar

    [5]

    Yamada A 2014 Mater. Res. Soc. 39 423Google Scholar

    [6]

    Robert A, Daniel W T, Fabio L M, Novak P, Bruce P G 2008 J. Am. Chem. Soc. 130 3554Google Scholar

    [7]

    Guo S P, Ma Z, Li J C, Xue H G 2017 J. Mater. Sci. 52 1469Google Scholar

    [8]

    Ramos-Sanchez G, Romero-Ibarra I C, Vazquez-Arenas J, Tapia C, Aguilar-Eseiza N, Gonzalez I 2017 Solid State Ionics 303 89Google Scholar

    [9]

    Kordatos A, Kuganathan N, Kelaidis N, Iyngaran P, Chroneos A 2018 Sci. Rep. 8 6754Google Scholar

    [10]

    Back C K, Yin R Z, Shin S J, Lee Y S, Choi W, Kim Y S 2012 J. Electrochem. Soc. 159 A887Google Scholar

    [11]

    Kang K, Morgan D, Ceder G 2009 Phys. Rev. B 79 014305Google Scholar

    [12]

    Lee H, Chang S K, Goh E Y, Jeong J Y, Lee J H, Kim H J, Cho J J, Hong S T 2008 Chem. Mater. 20 5Google Scholar

    [13]

    Rose E R, Pandian A S, Yan P F, Weker J N, Wang C M, Nanda J 2017 Chem. Mater. 29 2997Google Scholar

    [14]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [16]

    Kresse G, Jobert D 1999 Phys. Rev. B 59 1758

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [18]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [19]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [20]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901

    [21]

    Morgan D, van der Ven A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30Google Scholar

    [22]

    Urban A, Seo D H, Ceder G 2016 njp Computat. Mater. 2 16002

    [23]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [24]

    Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 112 9275

    [25]

    Zhao Y Q, Ma Q R, Liu Biao, Yu Z L, Cai M Q 2018 Phys. Chem. Chem. Phys. 20 14718Google Scholar

    [26]

    徐光宪, 王祥云 2010 物质结构 (北京: 科学出版社) 第725−727页

    Xu G X, Wang X Y 2010 Material Structure (Beijing: Science Press) pp725−727 (in Chinese)

    [27]

    Huang Z F, Meng X, Wang C Z, Sun Y, Chen G 2006 J.Power Sources 158 1394Google Scholar

    [28]

    Ramesha K, Seshadri R, Ederer C, He T, Subramanian M A 2004 Phys. Rev. B 70 214409Google Scholar

    [29]

    Krishna G, Dathar P, Sheppard D, Stevenson K J, Henkelman G 2011 Chem. Mater. 23 4032Google Scholar

    [30]

    Ouyang C, Shi S, Wang Z, Huang X, Chen L 2004 Phys. Rev. B 69 104303Google Scholar

    [31]

    Armstrong A R, Kuganathan N, Islam M S, Bruce P G 2011 J. Am. Chem. Soc. 133 13031Google Scholar

    [32]

    Kutner R 1981 Phys. Lett. A 81 239Google Scholar

    [33]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [6] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究.  , 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [8] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究.  , 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [12] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究.  , 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [13] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究.  , 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [14] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究.  , 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [15] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质.  , 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究.  , 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究.  , 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [18] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究.  , 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [19] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  12189
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-19
  • 修回日期:  2019-05-26
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回
Baidu
map