Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of off-axis meta-lens with large focal depth

Ding Ji-Fei Liu Wen-Bing Li Han-Hui Luo Yi Xie Chen-Kai Huang Li-Rong

Citation:

Design and fabrication of off-axis meta-lens with large focal depth

Ding Ji-Fei, Liu Wen-Bing, Li Han-Hui, Luo Yi, Xie Chen-Kai, Huang Li-Rong
PDF
HTML
Get Citation
  • A kind of off-axis meta-lens with large focal depth based on a single-layer metasurface is designed and fabricated. Our proposed off-axis focus is realized by combining the two functions of deflection and focus through phase superposition method, and the focal depth can be increased by optimizing the input aperture and off-axis deflection angle. Three-dimensional finite difference time domain (FDTD) method is used for numerical simulation to construct the off-axis meta-lens, then the off-axis meta-lens is fabricated and its focus performance is tested in a microwave anechoic chamber.Experimental results indicate that at the designed electromagnetic wave frequency (9 GHz), the measured off-axis deflection angle is 27.5° and the focal length is 335.4 mm, which agree with the designed values of 30° and 350 mm. The measured full-wave half-maximum (FWHM) at the focal point is 48.2 mm, however, the simulated FWHM is 40.2 mm, which means that the imaging quality of the measured focus spot is slightly worse than the simulated one. This is mainly due to the fact that the actual parameters of the fabricated meta-lens are inconsistent with simulated parameters. In addition, during the measurement, the large sampling interval in the x- direction also leads to experimental errors.The focusing efficiency of the off-axis meta-lens at the working frequency of 9 GHz is calculated to be 16.9%. The main reason for the low focusing efficiency is that the plasmonic metasurface works in the transmission mode, which can manipulate only the cross-polarized component of the incident wave, and the maximum efficiency will not exceed 25%. Moreover, the focal depths at 8 GHz, 9 GHz and 10 GHz are 263.2 mm, 278.5 mm and 298.2 mm, respectively, which are 7.02 times, 8.36 times and 9.98 times the corresponding wavelengths, indicating that a larger focal depth off-focus meta-lens is achieved. This kind of off-axis meta-lens has a simple structure, good off-axis focus ability and large focal depth, which has potential applications in a compact and planar off-axis optical system and large focal depth imaging system. Although the working waveband in this article is the microwave band, according to the size scaling effect of the metasurface, it is also possible to design a large focal depth off-axis meta-lens in other bands such as visible light and terahertz bands by using the same method.
      Corresponding author: Huang Li-Rong, lrhuang@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675074)
    [1]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [2]

    Sun S L, H Q, Hao J M, Xiao S Y, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [3]

    Bi Y, Huang L L, Li X W, Wang Y T 2021 Front. Optoelectron 14 154

    [4]

    Wan Lei Pan D P, Feng T H, Liu W P, Potapov A A 2021 Front. Optoelectron. 14 1Google Scholar

    [5]

    Scheuer J 2017 Nanophotonics 6 137Google Scholar

    [6]

    Chen S Q, Li Z C, Liu W W, Cheng H, Tian J G 2019 Adv. Mater. 31 16

    [7]

    Liu T J, Huang L R, Hong W, Ling Y H, Luan J, Sun Y L, Sun W H 2017 Opt. Express 25 16332Google Scholar

    [8]

    Ding J F, Huang L R, Liu W B, Ling Y H, Wu W, Li H H 2020 Opt. Express 28 32721Google Scholar

    [9]

    Pan W, Wang X Y, Chen Q, Ren X Y, Ma Y 2020 Front. Optoelectron. 16 6

    [10]

    Ji C, Song J K, Huang C, Wu X Y, Luo X G 2019 Opt. Express 27 34Google Scholar

    [11]

    Ling Y H, Huang L R, Hong W, Liu T J, Luan J, Liu W B, Wang Z Y 2017 Opt. Express 25 29812Google Scholar

    [12]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

    [13]

    Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar

    [14]

    Chen W T, Zhu A Y, Sisler J, Bharwani Z, Capasso F 2019 Nat. Commun. 10 1Google Scholar

    [15]

    Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen L, Xu B B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [16]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 67Google Scholar

    [17]

    Groever B, Chen W T, Capasso F 2017 Nano Lett. 17 4902Google Scholar

    [18]

    Chen Q M, Li Y, Han Y H, Deng D, Yang D H, Zhang Y, Liu Y, Gao J M 2018 Appl. Opt. 57 7891Google Scholar

    [19]

    Paniagua-Dominguez R, Yu Y F, Khaidarow E, Choi S, Leong V, R, Bakker M, Liang X N, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar

    [20]

    范庆斌, 徐挺 2017 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [21]

    杨皓明 2008 博士学位论文(天津: 南开大学)

    Yang H M 2008 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

    [22]

    Khorasaninejad M, Chen W T, Oh J, Capasso F 2016 Nano Lett. 16 3732Google Scholar

    [23]

    Zhu A Y, Chen W T, Khorasaninejad M, Oh J, Zaidi A, Mishra I, Devlin R C, Capasso F 2017 APL Photonics 2 036103Google Scholar

    [24]

    Zhou Y, Chen R, Ma Y G 2017 Opt. Lett. 42 4716Google Scholar

    [25]

    Zhu A Y, Chen W T, Sisler J, Yousef K M A, Lee E, Huang Y W, Qiu C W, Capasso F 2019 Adv. Opt. Mater. 7 1801144Google Scholar

    [26]

    Ou K, Li G H, Li T X, Yang H, Yu F L, Chen J, Zhao Z Y, Cao G T, Chen X S, Lu W 2018 Nanoscale 10 19154Google Scholar

    [27]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Photonics 5 5

    [28]

    Chen W T, Khhorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar

    [29]

    Chen C, Song W, Chen J W, Wang J H, Chen Y H, Xu B B, Chen M K, Li H M, Fang B, Chen J, Kuo H Y, Wang S M, Tsai D P, Zhu S, Li T 2019 Light Sci. Appl. 8 99Google Scholar

    [30]

    Zhou Y, Chen R, Ma Y G 2018 Appl. Sci. 8 3

    [31]

    Banerji S, Meem M, Majumder A, Vasquez F G, Sensale-Rodriguez B, Menon R 2019 Optica 6 6

  • 图 1  (a)基于超表面的波束偏转器; (b)常规的共轴超透镜; (c)离轴超透镜

    Figure 1.  (a) Beam deflector based on metasurface; (b) conventional on-axis meta-lens; (c) off-axis meta-lens.

    图 2  (a)离轴超透镜的天线单元; (b)当频率为9 GHz的x偏振波垂直入射到天线单元时, 正交偏振波的透射率和透射相位随lx的变化关系; (c)满足(3)式的相位分布

    Figure 2.  (a) Antenna unit of the off-axis meta-lens; (b) when an x-polarized wave with frequency of 9 GHz is incident perpendicularly onto the antenna units, transmittance and transmission phase of the orthogonal polarized wave vary with lx; (c) phase distributions satisfying Eq. (3).

    图 3  (a)制备的超表面样品的正面结构照片, 矩形红色虚线为局部放大图; (b)实验装置

    Figure 3.  (a) Image of the fabricated metasurface sample, and the rectangular red dotted line is a zoom view; (b) experimental set-up.

    图 4  测试得到的不同频率处正交偏振波的电场强度分布 (a) 8 GHz; (b) 9 GHz; (c) 10 GHz. 红色点划线代表聚焦平面所在的位置, 倾斜的白色虚线代表u1轴、u2轴和u3

    Figure 4.  Measured electric field intensity distributions of the orthogonal polarized waves at different frequencies: (a) 8 GHz; (b) 9 GHz; (c) 10 GHz. The red dotted lines represent the position of the focal planes, and the white dashed lines represent the u1 axis, u2 axis and u3 axis.

    图 5  工作频率9 GHz处, 透镜焦点处归一化电场强度分布 (a)仿真结果; (b)实验结果

    Figure 5.  At the working frequency of 9 GHz, the normalized electric field intensity distribution at the focal point of the metalens: (a) Simulation result; (b) experimental result.

    图 6  测试得到的不同频率处的焦深 (a) 8 GHz; (b) 9 GHz; (c) 10 GHz

    Figure 6.  Depth of focus at different frequencies: (a) 8 GHz; (b) 9 GHz; (c) 10 GHz.

    表 1  离轴超透镜的仿真结果和实验结果比较

    Table 1.  Simulation and experimental results of the off-axis metalens.

    入射波频
    率/GHz
    仿真结果实验结果
    α/(°)F0/mmDOF/mmα/(°)F0/mmDOF/mm
    833.2302.5223.630.5278.9263.2
    930.0350.0241.927.5335.4278.5
    1026.8385.3254.323.6400.2298.2
    DownLoad: CSV
    Baidu
  • [1]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [2]

    Sun S L, H Q, Hao J M, Xiao S Y, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [3]

    Bi Y, Huang L L, Li X W, Wang Y T 2021 Front. Optoelectron 14 154

    [4]

    Wan Lei Pan D P, Feng T H, Liu W P, Potapov A A 2021 Front. Optoelectron. 14 1Google Scholar

    [5]

    Scheuer J 2017 Nanophotonics 6 137Google Scholar

    [6]

    Chen S Q, Li Z C, Liu W W, Cheng H, Tian J G 2019 Adv. Mater. 31 16

    [7]

    Liu T J, Huang L R, Hong W, Ling Y H, Luan J, Sun Y L, Sun W H 2017 Opt. Express 25 16332Google Scholar

    [8]

    Ding J F, Huang L R, Liu W B, Ling Y H, Wu W, Li H H 2020 Opt. Express 28 32721Google Scholar

    [9]

    Pan W, Wang X Y, Chen Q, Ren X Y, Ma Y 2020 Front. Optoelectron. 16 6

    [10]

    Ji C, Song J K, Huang C, Wu X Y, Luo X G 2019 Opt. Express 27 34Google Scholar

    [11]

    Ling Y H, Huang L R, Hong W, Liu T J, Luan J, Liu W B, Wang Z Y 2017 Opt. Express 25 29812Google Scholar

    [12]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

    [13]

    Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar

    [14]

    Chen W T, Zhu A Y, Sisler J, Bharwani Z, Capasso F 2019 Nat. Commun. 10 1Google Scholar

    [15]

    Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen L, Xu B B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [16]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 67Google Scholar

    [17]

    Groever B, Chen W T, Capasso F 2017 Nano Lett. 17 4902Google Scholar

    [18]

    Chen Q M, Li Y, Han Y H, Deng D, Yang D H, Zhang Y, Liu Y, Gao J M 2018 Appl. Opt. 57 7891Google Scholar

    [19]

    Paniagua-Dominguez R, Yu Y F, Khaidarow E, Choi S, Leong V, R, Bakker M, Liang X N, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar

    [20]

    范庆斌, 徐挺 2017 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [21]

    杨皓明 2008 博士学位论文(天津: 南开大学)

    Yang H M 2008 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

    [22]

    Khorasaninejad M, Chen W T, Oh J, Capasso F 2016 Nano Lett. 16 3732Google Scholar

    [23]

    Zhu A Y, Chen W T, Khorasaninejad M, Oh J, Zaidi A, Mishra I, Devlin R C, Capasso F 2017 APL Photonics 2 036103Google Scholar

    [24]

    Zhou Y, Chen R, Ma Y G 2017 Opt. Lett. 42 4716Google Scholar

    [25]

    Zhu A Y, Chen W T, Sisler J, Yousef K M A, Lee E, Huang Y W, Qiu C W, Capasso F 2019 Adv. Opt. Mater. 7 1801144Google Scholar

    [26]

    Ou K, Li G H, Li T X, Yang H, Yu F L, Chen J, Zhao Z Y, Cao G T, Chen X S, Lu W 2018 Nanoscale 10 19154Google Scholar

    [27]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Photonics 5 5

    [28]

    Chen W T, Khhorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar

    [29]

    Chen C, Song W, Chen J W, Wang J H, Chen Y H, Xu B B, Chen M K, Li H M, Fang B, Chen J, Kuo H Y, Wang S M, Tsai D P, Zhu S, Li T 2019 Light Sci. Appl. 8 99Google Scholar

    [30]

    Zhou Y, Chen R, Ma Y G 2018 Appl. Sci. 8 3

    [31]

    Banerji S, Meem M, Majumder A, Vasquez F G, Sensale-Rodriguez B, Menon R 2019 Optica 6 6

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Li Hao, Pang Yong-Qiang, Qu Bing-Yue, Zheng Jiang-Shan, Xu Zhuo. Optical transparent metasurface lenses and their wireless communication efficiency enhancement. Acta Physica Sinica, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [4] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] Xu Ping, Li Xiong-Chao, Xiao Yu-Fei, Yang Tuo, Zhang Xu-Lin, Huang Hai-Xuan, Wang Meng-Yu, Yuan Xia, Xu Hai-Dong. Design and research of long-infrared dual-wavelength confocal metalens. Acta Physica Sinica, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [6] Wang Yan, Peng Miao, Cheng Wei, Peng Zheng, Cheng Hao, Zang Sheng-Yin, Liu Hao, Ren Xiao-Dong, Shuai Yu-Bei, Huang Cheng-Zhi, Wu Jia-Gui, Yang Jun-Bo. Controllable multi-trap optical tweezers based on low loss optical phase change and metalens. Acta Physica Sinica, 2023, 72(2): 027801. doi: 10.7498/aps.72.20221794
    [7] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [9] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [12] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [13] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Fan Qing-Bin, Xu Ting. Research progress of imaging technologies based on electromagnetic metasurfaces. Acta Physica Sinica, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [18] Wu Chen-Jun, Cheng Yong-Zhi, Wang Wen-Ying, He Bo, Gong Rong-Zhou. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [19] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [20] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
Metrics
  • Abstract views:  5640
  • PDF Downloads:  191
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2020
  • Accepted Date:  20 May 2021
  • Available Online:  17 September 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map