Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation mechanism of giant magneto-impedance effect of multi-field coupling Fe-based alloy

Zhang Jian-Qiang Qin Yan-Jun Fang Zheng Fan Xiao-Zhen Ma Yun Li Wen-Zhong Yang Hui-Ya Kuang Fu-Li Zhai Yao Shi Ying-Long Dang Wen-Qiang Ye Hui-Qun Fang Yun-Zhang

Citation:

Regulation mechanism of giant magneto-impedance effect of multi-field coupling Fe-based alloy

Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Ma Yun, Li Wen-Zhong, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Shi Ying-Long, Dang Wen-Qiang, Ye Hui-Qun, Fang Yun-Zhang
PDF
HTML
Get Citation
  • Fe-based amorphous and nanocrystalline alloys are considered as the preferred dual-green energy-saving materials due to their unique magnetic properties, such as high permeability, low coercivity, and near-zero saturation magnetostriction. As such, they have received extensive attention in applications like magnetic core material for high-frequency transformers, common model chokes, ground fault interrupters, and rotors in motors, over the past decades. In this work, Fe64.8Co7.2Nb4Si4.8B19.2 (in atom percent) amorphous alloy ribbons are prepared by using the single roller quenching method, then subsequently subjected to multi-field coupling heating treatment in the air which includes heating by Joule heating effect and tensile stress field. Furthermore, the longitudinally driven giant magneto-impedance effect and magnetic domain structures of ribbons are observed by using 4294A impedance analyzer and magnetic force microscopy, respectively. The magneto-crystalline anisotropy field and stress anisotropy field of ribbons are analyzed by using X-ray diffraction, random anisotropy model, and numerical fitting. Meanwhile, the concept of magnetic anisotropy competing factor (k) is proposed, from the viewpoint of magnetic anisotropy, a mechanism for regulating giant magneto-impedance effect of ribbons prepared with multi-field coupling is studied. It is found that the longitudinally driven giant magneto-impedance effect gradually transforms from the single peak to dome-like with tensile stress increasing. However, a spike and dome-like giant magneto-impedance effect appears during such transformation, which is composed of two parts: spike-like top and dome-like base. Based on the magnetic domain structure of ribbons, it is found that the typical stress-annealed transversal magnetic domain structure is observed in ribbons of $k \leqslant 0.147$, while nucleation and splitting phenomenon of new domains are observed at the transversal magnetic domain wall in ribbons of k > 0.147. Both longitudinally driven giant magneto-impedance effect and domain structures provide evidence to support the competing inhibition effect of magnetic anisotropy which exists in Fe-based alloy ribbon. Therefore, it is suggested that Fe-based alloys exhibit excellent stress-sensitive properties that can be understood by the competing inhibition effects of magnetic anisotropy. It is further shown that the competing inhibition effect of magnetic anisotropy is the main reason for regulating the giant magneto-impedance effect of soft magnetic materials. This multi-field coupling Fe-based alloy has good application prospects in regulating magnetic properties of magnetic materials.
      Corresponding author: Zhang Jian-Qiang, zhjian8386@163.com ; Fang Yun-Zhang, fyz@zjnu.cn
    • Funds: Project supported by the Key Specialized Research and Development Program of Xinjiang Uygur Autonomous Region, China (Grant No. KYZ04Y21100), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 12064037), the Program on Science and Technology of Gansu Province, China (Grant No. 21JR1RE288), the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2021D01B47), and the High Level Pre-research Program of Tianshui Normal University, China (Grant No. GJB2021-09) .
    [1]

    Duwez P, Willens R H, Klement W 1960 J. Appl. Phys. 31 1136

    [2]

    汪卫华, 张哲峰 2021 金属学报 57 1Google Scholar

    Wang W H, Zhang Z F 2021 Acta Metall. Sin. 57 1Google Scholar

    [3]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [4]

    Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189

    [5]

    Mohri K, Kawashiwa K, Yoshida H, Panina L V 1992 IEEE. Trans. Magn. 28 3150Google Scholar

    [6]

    Indaa K, Mohri K, Inuzuka K 1994 IEEE. Trans. Magn. 30 4623Google Scholar

    [7]

    Panina L V, Mohri K, Uchiyama T, Noda M, Bushida 1995 IEEE. Trans. Magn. 31 1249Google Scholar

    [8]

    Kawashima K, Kohzawa K, Yoshida H, Mohri M 1993 IEEE. Trans. Magn. 29 3168Google Scholar

    [9]

    杨介信, 杨夑龙, 陈国, 蒋可玉, 沈国土, 胡炳元, 金若鹏 1998 中国科学 43 1051Google Scholar

    Yang J X, Yang X L, Chen G, Jiang K Y, Shen G T, Hu B Y, Jin R P 1998 Chin. Sci. Bull. 43 1051Google Scholar

    [10]

    Gong W Y, Wu Z M, Lin H, Yang J X, Zhao Z J 2008 J. Magn. Magn. Mater. 320 1553Google Scholar

    [11]

    方允樟, 许启明, 叶慧群, 郑金菊, 范晓珍, 潘日敏, 马云, 李文忠 2011 功能材料 42 1083

    Fang Y Z, Xu Q M, Ye H Q, Zheng J J, Fan X Z, Pan R M, Ma Y, Li W Z 2011 Funct. Mater. 42 1083

    [12]

    Zhukov A, Ipatov M, Churyukanova M, Talaat A, Blanco J M, Zhukova V 2017 J. Alloys Compd. 727 887Google Scholar

    [13]

    Herzer G 2013 Acta. Mater. 61 718Google Scholar

    [14]

    Zhukov A, Ipatov M, Corte-Leon P, Gonzalez-Legarreta L, Churyukanova M, Blanco J M, Gonzalez J, Taskaev S, Hernando B, Zhukova V 2020 J. Alloys Compd. 814 152225Google Scholar

    [15]

    Corte-Leon P, Zhukova V, Ipatov M, Blanco J M, Gonzalez J, Zhukov A 2019 Intermetallics 105 92Google Scholar

    [16]

    Zhukova V, Blanco J M, Ipatov M, Gonzalez J, Churyukanova M, Zhukov A 2018 Scr. Mater. 142 10Google Scholar

    [17]

    Phan M H, Peng H X 2008 Prog. Mater. Sci. 53 323Google Scholar

    [18]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927Google Scholar

    [19]

    Kernion S J, Ohodnicki P R, Grossmann J J, Leary A, Shen S, Keylin V, Huth J F, Horwath J, Lucas M S, McHenry M E 2012 Appl. Phys. Lett. 101 102408Google Scholar

    [20]

    Iannotti V, Amoruso S, Ausanio G, Wang X, Lanotte L, Barone A C, Margaris G, Trohidou K N, Fiorani D 2011 Phys. Rev. B 83 214422Google Scholar

    [21]

    Bolyachkin A S, Volegov A S, Kudrevatykh N V 2015 J. Magn. Magn. Mater. 378 362Google Scholar

    [22]

    Muscas G, Concas G, Laureti S, Testa A M, Mathieu R, De Toro J A, Cannas C, Musinu A, Novak M A, Sangregorio C, Lee S S, Peddis D 2018 Phys. Chem. Chem. Phys. 20 28634Google Scholar

    [23]

    纪松, 杨国斌, 王润 1996 45 2061Google Scholar

    Ji S, Yang G B, Wang R 1996 Acta Phys. Sin. 45 2061Google Scholar

    [24]

    Hinokihara T, Miyashita S 2021 Phys. Rev. B 103 054421Google Scholar

    [25]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [26]

    Herzer G 1995 Scr. Metall. Mater. 33 1741Google Scholar

    [27]

    Hernando A, Kulik T 1994 Phys. Rev. B 49 7064Google Scholar

    [28]

    张建强, 路飞平, 赵小龙, 何林芳 2019 磁性材料及器件 50 9

    Zhang J Q, Lu F P, Zhao X L, He L F 2019 J. Magn. Mater. Device 50 9

    [29]

    Jaafar M, Pablo-Navarro A, Berganza E, Ares P, Magén C, Masseboeuf A, Gatel C, Snoeck E, Gómez-Herrero J, Teresa J M, Asenjo A 2020 Nanoscale 12 10090Google Scholar

  • 图 1  Fe基合金LDGMI效应 (a) 0−503 MPa退火; (b) “单峰”状; (c) “尖刺+穹顶”状; (d) “穹顶”状

    Figure 1.  LDGMI effect of Fe-based alloy: (a) Annealed with different tensile stress (0−503 MPa); (b) single peak shape; (c) spike and dome shape; (d) dome shape.

    图 2  Fe基合金最大磁阻抗比及磁灵敏度与退火应力关系

    Figure 2.  Maximum magneto-impedance ratio and magnetic sensitivity of Fe-based alloys ribbons as a function of annealing tensile stress.

    图 3  MFC热处理Fe基合金带的XRD谱

    Figure 3.  XRD pattern of Fe-based alloy heated with MFC method.

    图 4  “尖刺+穹顶”状LDGMI曲线高斯拟合 (a) 180 MPa退火合金带LDGMI效应拟合; (b) 总拟合曲线; (c) “尖刺”状; (d) “穹顶”状

    Figure 4.  Gaussian fitting of “spike and dome” like LDGMI effect curve: (a) Fitting curve of LDGMI effect for Fe-based alloy ribbon annealed with tensile stress of 180 MPa; (b) the whole fitting curve; (c) spike shape; (d) dome shape.

    图 5  应力各向异性场和磁晶各向异性场与应力关系

    Figure 5.  Stress anisotropy field and the magneto-crystalline anisotropy field of Fe-based alloy ribbons as a function of annealing tensile stress.

    图 6  不同退火应力下, MFC热处理Fe基合金磁畴结构图 (a) 0 MPa; (b) 94 MPa; (c) 339 MPa

    Figure 6.  Domain structure patterns of Fe-based alloy ribbons heated by MFC under different tensile stress: (a) 0 MPa; (b) 94 MPa; (c) 339 MPa.

    图 7  Fe基合金磁各向异性竞争抑制作用模型示意图

    Figure 7.  Schematic diagram of the competing inhibition model of magnetic anisotropy in Fe-based alloys.

    表 1  未加张应力退火Fe基合金带的结构参数和磁学量参数

    Table 1.  Structural and magnetic parameters of Fe-based alloy annealed without tensile stress.

    参数/单位数值
    结构参数D/nm16.20
    x/%53.12
    磁学量参数K1/(J·m–3) 8000[26]
    A/(J·m–1) 10–11[26]
    Js/T 1.24[25]
    K1〉/(J·m–3)8.36
    Hk/(A·m–1)13.48
    Hσ/(A·m–1)91.51
    k0.147
    DownLoad: CSV

    表 2  MFC热处理Fe基合金带LDGMI效应曲线拟合DPGF参数和磁学参数

    Table 2.  DPGF parameters of LDGMI effect curves and magnetic parameters of Fe-based alloy heated by MFC method.

    应力
    σ/MPa
    DPGF参数磁各向异性场 实验值
    W1W2RHk/(A·m–1)Hσ/(A·m–1)Heff/(A·m–1) kHeff/(A·m–1)
    94105.64549.940.997 52.82274.97280.000.195
    180139.97893.040.986 69.98446.52451.970.157
    260177.791183.860.97588.90591.93598.57 0.150
    339106.5745.23752.800.143 772.52
    421124.32899.94908.490.138 903.81
    503 142.361056.561066.110.135 1012.43
    DownLoad: CSV
    Baidu
  • [1]

    Duwez P, Willens R H, Klement W 1960 J. Appl. Phys. 31 1136

    [2]

    汪卫华, 张哲峰 2021 金属学报 57 1Google Scholar

    Wang W H, Zhang Z F 2021 Acta Metall. Sin. 57 1Google Scholar

    [3]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [4]

    Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189

    [5]

    Mohri K, Kawashiwa K, Yoshida H, Panina L V 1992 IEEE. Trans. Magn. 28 3150Google Scholar

    [6]

    Indaa K, Mohri K, Inuzuka K 1994 IEEE. Trans. Magn. 30 4623Google Scholar

    [7]

    Panina L V, Mohri K, Uchiyama T, Noda M, Bushida 1995 IEEE. Trans. Magn. 31 1249Google Scholar

    [8]

    Kawashima K, Kohzawa K, Yoshida H, Mohri M 1993 IEEE. Trans. Magn. 29 3168Google Scholar

    [9]

    杨介信, 杨夑龙, 陈国, 蒋可玉, 沈国土, 胡炳元, 金若鹏 1998 中国科学 43 1051Google Scholar

    Yang J X, Yang X L, Chen G, Jiang K Y, Shen G T, Hu B Y, Jin R P 1998 Chin. Sci. Bull. 43 1051Google Scholar

    [10]

    Gong W Y, Wu Z M, Lin H, Yang J X, Zhao Z J 2008 J. Magn. Magn. Mater. 320 1553Google Scholar

    [11]

    方允樟, 许启明, 叶慧群, 郑金菊, 范晓珍, 潘日敏, 马云, 李文忠 2011 功能材料 42 1083

    Fang Y Z, Xu Q M, Ye H Q, Zheng J J, Fan X Z, Pan R M, Ma Y, Li W Z 2011 Funct. Mater. 42 1083

    [12]

    Zhukov A, Ipatov M, Churyukanova M, Talaat A, Blanco J M, Zhukova V 2017 J. Alloys Compd. 727 887Google Scholar

    [13]

    Herzer G 2013 Acta. Mater. 61 718Google Scholar

    [14]

    Zhukov A, Ipatov M, Corte-Leon P, Gonzalez-Legarreta L, Churyukanova M, Blanco J M, Gonzalez J, Taskaev S, Hernando B, Zhukova V 2020 J. Alloys Compd. 814 152225Google Scholar

    [15]

    Corte-Leon P, Zhukova V, Ipatov M, Blanco J M, Gonzalez J, Zhukov A 2019 Intermetallics 105 92Google Scholar

    [16]

    Zhukova V, Blanco J M, Ipatov M, Gonzalez J, Churyukanova M, Zhukov A 2018 Scr. Mater. 142 10Google Scholar

    [17]

    Phan M H, Peng H X 2008 Prog. Mater. Sci. 53 323Google Scholar

    [18]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927Google Scholar

    [19]

    Kernion S J, Ohodnicki P R, Grossmann J J, Leary A, Shen S, Keylin V, Huth J F, Horwath J, Lucas M S, McHenry M E 2012 Appl. Phys. Lett. 101 102408Google Scholar

    [20]

    Iannotti V, Amoruso S, Ausanio G, Wang X, Lanotte L, Barone A C, Margaris G, Trohidou K N, Fiorani D 2011 Phys. Rev. B 83 214422Google Scholar

    [21]

    Bolyachkin A S, Volegov A S, Kudrevatykh N V 2015 J. Magn. Magn. Mater. 378 362Google Scholar

    [22]

    Muscas G, Concas G, Laureti S, Testa A M, Mathieu R, De Toro J A, Cannas C, Musinu A, Novak M A, Sangregorio C, Lee S S, Peddis D 2018 Phys. Chem. Chem. Phys. 20 28634Google Scholar

    [23]

    纪松, 杨国斌, 王润 1996 45 2061Google Scholar

    Ji S, Yang G B, Wang R 1996 Acta Phys. Sin. 45 2061Google Scholar

    [24]

    Hinokihara T, Miyashita S 2021 Phys. Rev. B 103 054421Google Scholar

    [25]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [26]

    Herzer G 1995 Scr. Metall. Mater. 33 1741Google Scholar

    [27]

    Hernando A, Kulik T 1994 Phys. Rev. B 49 7064Google Scholar

    [28]

    张建强, 路飞平, 赵小龙, 何林芳 2019 磁性材料及器件 50 9

    Zhang J Q, Lu F P, Zhao X L, He L F 2019 J. Magn. Mater. Device 50 9

    [29]

    Jaafar M, Pablo-Navarro A, Berganza E, Ares P, Magén C, Masseboeuf A, Gatel C, Snoeck E, Gómez-Herrero J, Teresa J M, Asenjo A 2020 Nanoscale 12 10090Google Scholar

  • [1] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] Shao Xian-Yi, Xu Ai-Jiao, Wang Tian-Le. Effects of the angle between magnetic field and ribbon axis on the magneto-impedance properties of amorphous FeSiB/Cu/FeSiB sandwiched ribbon. Acta Physica Sinica, 2019, 68(6): 067501. doi: 10.7498/aps.68.20181806
    [3] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo. Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [4] Zhang Shu-Ling, Chen Wei-Ye, Zhang Yong. Asymmetric giant magnetoimpedance of Co-rich melt-extraction microwires. Acta Physica Sinica, 2015, 64(16): 167501. doi: 10.7498/aps.64.167501
    [5] Zhang Zhi-Dong. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials. Acta Physica Sinica, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [6] Li Yin-Feng, Feng Su-Qin, Wang Jian-Yong. Influence of AC current on the profile of GMI effect in Fe-based nanocrystalline wire. Acta Physica Sinica, 2011, 60(3): 037306. doi: 10.7498/aps.60.037306
    [7] Fang Yun-Zhang, Xu Qi-Ming, Zheng Jin-Ju, Lü Bao-Hua, Pan Ri-Min, Ye Hui-Qun, Zheng Jian-Long, Fan Xiao-Zhen. Investigation on the relation between the length of magnetic core and the giant magnetoimpedance effect of solenoid with FeCo-based magnetic core. Acta Physica Sinica, 2011, 60(12): 127501. doi: 10.7498/aps.60.127501
    [8] Zhang Shu-Ling, Sun Jian-Fei, Xing Da-Wei. Influence of field annealing on giant magneto-impedance effect of Co-based melt extraction amorphous wires. Acta Physica Sinica, 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [9] Pan Hai-Lin, Cheng Jin-Ke, Zhao Zhen-Jie, He Jia-Kang, Ruan Jian-Zhong, Yang Xie-Long, Yuan Wang-Zhi. Study of the LC resonance giant magneto-impedance effect. Acta Physica Sinica, 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [10] Pang Hao, Li Gen, Wang Zan-Ji. Analysis of magnetoimpedance in amorphous wire passing through a magnetic ring. Acta Physica Sinica, 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [11] Xin Hong-Liang, Yuan Wang-Zhi, Cheng Jin-Ke, Lin Hong, Ruan Jian-Zhong, Zhao Zhen-Jie. The giant magneto-impedance effect and frequency dependence of magnetization processes in NiFeCoP/BeCu composite wire. Acta Physica Sinica, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [12] Wang Wen-Jing, Yuan Hui-Min, Jiang Shan, Xiao Shu-Qin, Yan Shi-Shen. Transverse giant magneto-impedance effect in FeCuCrVSiB single layered and multilayered films. Acta Physica Sinica, 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [13] Liu Long-Ping, Zhao Zhen-Jie, Huang Can-Xing, Wu Zhi-Ming, Yang Xie-Long. Analysis of current-density distribution and giant magnetoimpedance effect in composite wires. Acta Physica Sinica, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [14] Wang Wen-Jing, Xiao Shu-Qin, Liu Yi-Hua, Chen Wei-Ping, Dai You-Yong, Jiang Shan, Yuan Hui-Min, Yan Shi-Shen. The influence of sputtering power on the giantmagneto-impedance of FeZrBCu film s. Acta Physica Sinica, 2005, 54(4): 1821-1825. doi: 10.7498/aps.54.1821
    [15] Chen Wei-Ping, Xiao Shu-Qin, Wang Wen-Jing, Jiang Shan, Liu Yi-Hua. Study on the giant magnetoimpedance effect of FeCuCrVSiB multilayered films. Acta Physica Sinica, 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [16] Yang Quan-Min, Wang Ling-Ling, Sun De-Cheng. Theoretical study on the influence of the microstructure of Fe73.5Cu1Nb3Si13.5B9 on its giant magneto-impedance effect. Acta Physica Sinica, 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [17] Wang Ai-Ling, Liu Jiang-Tao, Zhou Yun-Song, Jiang Hong-Wei, Zheng Wu. The magnetic anisotropic effect on giant magnetoimpedance in sandwiched films. Acta Physica Sinica, 2004, 53(3): 905-910. doi: 10.7498/aps.53.905
    [18] Liu Jiang-Tao, Zhou Yun-Song, Wang Ai-Ling, Jiang Hong-Wei, Zheng Wu. Theoretical study on the giant magnetoimpedance in coaxial-cable wire and sandwi ched film. Acta Physica Sinica, 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [19] ZHONG ZHI-YONG, LAN ZHONG-WEN, ZHANG HUAI-WU, LIU YING-LI, WANG HAO-CAI. COMPUTATION ON GIANT MAGNETO-IMPEDANCE EFFECTS IN FERROMAGNETIC/NON-FERROMAGNETIC/FERROMAGNETIC LAYERED THIN FILMS. Acta Physica Sinica, 2001, 50(8): 1610-1615. doi: 10.7498/aps.50.1610
    [20] Xiao Shu-Qin, Liu Yi-Hua, Yan Shi-Shen, Dai You-Yong, Zhang Lin, Mei Liang-Mo. Magnetic Properties and Giant Magnetoimpednce Effects of FeCuNdSiB Single Layered and Sandwiched Films. Acta Physica Sinica, 1999, 48(13): 187-192. doi: 10.7498/aps.48.187
Metrics
  • Abstract views:  3545
  • PDF Downloads:  45
  • Cited By: 0
Publishing process
  • Received Date:  11 July 2022
  • Accepted Date:  28 August 2022
  • Available Online:  05 December 2022
  • Published Online:  05 December 2022

/

返回文章
返回
Baidu
map