-
自2004年成功实现石墨烯的机械剥离制备以来, 二维材料凭借其独特的结构和物理化学性质, 在电子、光电和能源等领域引起了广泛的研究和发展. 在合成方法方面, 科研人员在传统的机械剥离、液相剥离、气相沉积、湿化学合成以及纳米材料相工程等基础上, 进一步推进了原子台阶方法, 用于制备高质量、大尺寸二维单晶材料(2DSCM). 本文详细介绍了近几年关于原子台阶调控2DSCM生长的代表性工作. 首先, 对研究背景进行了简要介绍; 然后, 讨论了2DSCM的主要合成方法, 并分析了外延制备非中心对称材料的困难及原因; 之后, 介绍了通过原子台阶辅助制备2DSCM的生长机制和最新进展, 分析了原子台阶调控2DSCM成核的理论基础及通用性, 并对未来实现大尺寸、方向可控的2DSCM的挑战和发展方向进行了预测; 最后, 系统展望了台阶方法制备大尺寸2DSCM在未来规模化芯片器件方向的潜在应用.Since the successful mechanical exfoliation of graphene in 2004, two-dimensional materials have aroused extensive research and fast developed in various fields such as electronics, optoelectronics and energy, owing to their unique structural and physicochemical properties. In terms of synthesis methods, researchers have made further advancements in the atomic step method, building upon traditional techniques such as mechanical exfoliation, liquid-phase exfoliation, vapor-phase deposition, wet chemical synthesis, and nanomaterial self-assembly. These efforts aim to achieve high-quality large-scale two-dimensional single crystal materials. In this article, the representative research on the growth of two-dimensional single crystal materials controlled by atomic steps in recent years is reviewed in detail. To begin with, the research background is briefly introduced, then the main synthesis methods of two-dimensional single crystal materials are discussed and the challenges and reasons for the difficulty in epitaxially preparing non-centrosymmetric materials are analyzed. Subsequently, the growth mechanisms and recent advances in the preparation of two-dimensional single crystal materials assisted by atomic steps are presented. The theoretical basis and universality of atomic step-controlled nucleation in two-dimensional single crystal material are analyzed. Furthermore, the challenges and future directions for achieving large-scale, directionally controllable two-dimensional single crystal materials are predicted. Finally, potential applications of the step method in the future scalable chip device fabrication are systematically discussed.
-
Keywords:
- two-dimensional single crystal materials /
- atomic steps /
- non-centrosymmetry /
- epitaxial growth
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[3] Huang H, Zha J, Li S, Tan C 2022 Chinese Chem. Lett. 33 163
Google Scholar
[4] Zhang J, Tan B, Zhang X, Gao F, Hu Y, Wang L, Duan X, Yang Z, Hu P 2021 Adv. Mater. 33 2000769
Google Scholar
[5] Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552
Google Scholar
[6] Miró P, Ghorbani-Asl M, Heine T 2014 Angew. Chem. Int. Edit. 53 3015
Google Scholar
[7] Pi L, Li L, Liu K, Zhang Q, Li H, Zhai T 2019 Adv. Funct. Mater. 29 1904932
Google Scholar
[8] Si J, Yu J, Shen Y, Zeng M, Fu L 2021 Small Struct. 2 2000101
Google Scholar
[9] Lin Z, Wang C, Chai Y 2020 Small 16 2003319
Google Scholar
[10] Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444
Google Scholar
[11] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H 2017 Chem. Rev. 117 6225
Google Scholar
[12] Koman V B, Liu P, Kozawa D, Liu A T, Cottrill A L, Son Y, Lebron J A, Strano M S 2018 Nat. Nanotechnol. 13 819
Google Scholar
[13] Zhao C, Tan C, Lien D-H, Song X, Amani M, Hettick M, Nyein H Y Y, Yuan Z, Li L, Scott M C, Javey A 2020 Nat. Nanotechnol. 15 53
Google Scholar
[14] Zhu W, Low T, Wang H, Ye P, Duan X 2019 2D Mater. 6 032004
Google Scholar
[15] Conti S, Pimpolari L, Calabrese G, Worsley R, Majee S, Polyushkin D K, Paur M, Pace S, Keum D H, Fabbri F, Iannaccone G, Macucci M, Coletti C, Mueller T, Casiraghi C, Fiori G 2020 Nat. Commun. 11 3566
Google Scholar
[16] Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y, Wang X 2021 Nat. Nanotechnol. 16 1201
Google Scholar
[17] Kim K S, Lee D, Chang C S, Seo S, Hu Y, Cha S, Kim H, Shin J, Lee J H, Lee S 2023 Nature 614 88
Google Scholar
[18] Wang J, Huang C, You Y, Guo Q, Xue G, Hong H, Jiao Q, Yu D, Du L, Zhao Y, Liu K 2022 J. Phys. Chem. C 126 3797
Google Scholar
[19] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H 2019 Nature 573 507
Google Scholar
[20] Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338
Google Scholar
[21] Wang M, Huang M, Luo D, Li Y, Choe M, Seong W K, Kim M, Jin S, Wang M, Chatterjee S 2021 Nature 596 519
Google Scholar
[22] Chen Z, Xie C, Wang W, Zhao J, Liu B, Shan J, Wang X, Hong M, Lin L, Huang L 2021 Sci. Adv. 7 eabk0115
Google Scholar
[23] Shi Z, Wang X, Li Q, Yang P, Lu G, Jiang R, Wang H, Zhang C, Cong C, Liu Z, Wu T, Wang H, Yu Q, Xie X 2020 Nat. Commun. 11 849
Google Scholar
[24] Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y 2011 J. Am. Chem. Soc. 133 17548
Google Scholar
[25] Wang H, Xue X, Jiang Q, Wang Y, Geng D, Cai L, Wang L, Xu Z, Yu G 2019 J. Am. Chem. Soc. 141 11004
Google Scholar
[26] Yazyev O V, Louie S G 2010 Nat. Mater. 9 806
Google Scholar
[27] Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720
Google Scholar
[28] Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222
Google Scholar
[29] Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X 2021 Adv. Sci. 8 2003834
Google Scholar
[30] Mak K F, Shan J 2016 Nat. Photonics 10 216
Google Scholar
[31] Lv L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331
Google Scholar
[32] Li J, Ding Y, Zhang D W, Zhou P 2019 Acta Phys. -Chim. Sin. 35 1058
Google Scholar
[33] Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311
Google Scholar
[34] Zhou X, Cheng J, Zhou Y, Cao T, Hong H, Liao Z, Wu S, Peng H, Liu K, Yu D 2015 J. Am. Chem. Soc. 137 7994
Google Scholar
[35] Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987
Google Scholar
[36] Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z 2019 Nat. Photonics 13 754
Google Scholar
[37] Hong H, Wu C, Zhao Z, Zuo Y, Wang J, Liu C, Zhang J, Wang F, Feng J, Shen H, Yin J, Wu Y, Zhao Y, Liu K, Gao P, Meng S, Wu S, Sun Z, Liu K, Xiong J 2021 Nat. Photonics 15 510
Google Scholar
[38] Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L 2020 Nat. Nanotechnol. 15 118
Google Scholar
[39] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722
Google Scholar
[40] El-Kady M F, Shao Y, Kaner R B 2016 Nat. Rev. Mater. 1 16033
Google Scholar
[41] Xia J, Chen F, Li J, Tao N 2009 Nat. Nanotechnol. 4 505
Google Scholar
[42] Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F 2016 Nat. Mater. 15 48
Google Scholar
[43] Qin B, Wang D, Hong T, Wang Y, Liu D, Wang Z, Gao X, Ge Z H, Zhao L D 2023 Nat. Commun. 14 1366
Google Scholar
[44] Kotakoski J, Meyer J C 2012 Phys. Rev. B 85 195447
Google Scholar
[45] Lee M, Renshof J R, van Zeggeren K J, Houmes M J, Lesne E, Šiškins M, van Thiel T C, Guis R H, van Blankenstein M R, Verbiest G J 2022 Adv. Mater. 34 2204630
Google Scholar
[46] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechnol. 8 119
Google Scholar
[47] Ye F, Lee J, Feng P X L 2018 Nano Lett. 18 1678
Google Scholar
[48] Mehmood A, Mubarak N, Khalid M, Walvekar R, Abdullah E, Siddiqui M, Baloch H A, Nizamuddin S, Mazari S 2020 J. Environ. Chem. Eng. 8 103743
Google Scholar
[49] Jiang H, Zheng L, Liu Z, Wang X 2020 InfoMat 2 1077
Google Scholar
[50] Liang J, Wang J, Zhang Z, Su Y, Guo Y, Qiao R, Song P, Gao P, Zhao Y, Jiao Q, Wu S, Sun Z, Yu D, Liu K 2019 Adv. Mater. 31 1808160
Google Scholar
[51] Liu T, Cui Z, Li X, Cui H, Liu Y 2020 ACS Omega 6 988
Google Scholar
[52] Jiang F, Zhao W S, Zhang J 2020 Microelectron. Eng. 225 111279
Google Scholar
[53] 徐小志, 张晓闻, 王然, 曾凡凯, 周涛 2021 华南师范大学学报(自然科学版) 53 1
Xu X Z, Zhang X W, Wang R, Zeng F K, Zhou T 2021 J. South China Normal Univ. (Natural Science Edition) 53 1
[54] Xu X, Liu K 2022 Sci. Bull. 67 1410
Google Scholar
[55] Liu C, Wang L, Qi J, Liu K 2020 Adv. Mater. 32 2000046
Google Scholar
[56] 刘天瑶, 刘灿, 刘开辉 2022 71 108103
Google Scholar
Liu T Y, Liu C, Liu K H 2022 Acta Phys. Sin. 71 108103
Google Scholar
[57] Zhang Z, Forti S, Meng W, Pezzini S, Hu Z, Coletti C, Wang X, Liu K 2023 2D Mater. 10 032001
Google Scholar
[58] Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110
Google Scholar
[59] Luo Z, Lu Y, Singer D W, Berck M E, Somers L A, Goldsmith B R, Johnson A C 2011 Chem. Mater. 23 1441
Google Scholar
[60] Han G H, Gunes F, Bae J J, Kim E S, Chae S J, Shin H J, Choi J Y, Pribat D, Lee Y H 2011 Nano Lett. 11 4144
Google Scholar
[61] Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43
Google Scholar
[62] Safron N S, Kim M, Gopalan P, Arnold M S 2012 Adv. Mater. 24 1041
Google Scholar
[63] Kim H, Mattevi C, Calvo M R, Oberg J C, Artiglia L, Agnoli S, Hirjibehedin C F, Chhowalla M, Saiz E 2012 ACS Nano 6 3614
Google Scholar
[64] Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nat. Chem. 11 730
Google Scholar
[65] Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930
Google Scholar
[66] Xu X, Qiao R, Liang Z, Zhang Z, Wang R, Zeng F, Cui G, Zhang X, Zou D, Guo Y, Liu C, Fu Y, Zhou X, Wu M, Wang Z J, Zhao Y, Wang E, Tang Z, Yu D, Liu K 2022 Nano Res. 15 919
Google Scholar
[67] Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 P. Natl. A. Sci. 109 7992
Google Scholar
[68] Zang X, Zhou Q, Chang J, Teh K S, Wei M, Zettl A, Lin L 2017 Adv. Mater. Interfaces 4 1600783
Google Scholar
[69] Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096
Google Scholar
[70] Vlassiouk I V, Stehle Y, Pudasaini P R, Unocic R R, Rack P D, Baddorf A P, Ivanov I N, Lavrik N V, List F, Gupta N, Bets K V, Yakobson B I, Smirnov S N 2018 Nat. Mater. 17 318
Google Scholar
[71] Chung J W, Dai Z R, Ohuchi F S 1998 J. Cryst. Growth 186 137
Google Scholar
[72] Cun H, Macha M, Kim H, Liu K, Zhao Y, LaGrange T, Kis A, Radenovic A 2019 Nano Res. 12 2646
Google Scholar
[73] Ishihara S, Hibino Y, Sawamoto N, Machida H, Wakabayashi H, Ogura A 2018 MRS Adv. 3 379
Google Scholar
[74] Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano 9 2080
Google Scholar
[75] Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164
Google Scholar
[76] Zhang Z, Yang X, Liu K, Wang R 2022 Adv. Sci. 9 2105201
Google Scholar
[77] Young E P, Park J, Bai T, Choi C, DeBlock R H, Lange M, Poust S, Tice J, Cheung C, Dunn B S 2018 ACS Appl. Nano Mater. 1 4737
Google Scholar
[78] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227
Google Scholar
[79] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656
Google Scholar
[80] Shi J, Chen X, Zhao L, Gong Y, Hong M, Huan Y, Zhang Z, Yang P, Li Y, Zhang Q 2018 Adv. Mater. 30 1804616
Google Scholar
[81] Jiao L, Jie W, Yang Z, Wang Y, Chen Z, Zhang X, Tang W, Wu Z, Hao J 2019 J. Mater. Chem. C 7 2522
Google Scholar
[82] Seo S, Choi H, Kim S Y, Lee J, Kim K, Yoon S, Lee B H, Lee S 2018 Adv. Mater. Interfaces 5 1800524
Google Scholar
[83] Keller B D, Bertuch A, Provine J, Sundaram G, Ferralis N, Grossman J C 2017 Chem. Mater. 29 2024
Google Scholar
[84] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano letters 13 2615
Google Scholar
[85] Shu H, Tao X M, Ding F 2015 Nanoscale 7 1627
Google Scholar
[86] Metin O, Mazumder V, Ozkar S, Sun S 2010 J. Am. Chem. Soc. 132 1468
Google Scholar
[87] Liu S, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2017 ACS Nano 11 3585
Google Scholar
[88] Liu S, Comer J, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2019 Nanoscale 11 5607
Google Scholar
[89] Zhang X, Xu Z, Hui L, Xin J, Ding F 2012 J. Phys. Chem. Lett. 3 2822
Google Scholar
[90] Dong J, Zhang L, Dai X, Ding F 2020 Nat. Commun. 11 5862
Google Scholar
[91] Wang Z J, Dong J, Li L, Dong G, Cui Y, Yang Y, Wei W, Blume R, Li Q, Wang L, Xu X, Liu K, Barroo C, Frenken J W M, Fu Q, Bao X, Schlögl R, Ding F, Willinger M G 2020 ACS Nano 14 1902
Google Scholar
[92] Dong J, Geng D, Liu F, Ding F 2019 Angew. Chem. Int. Edit. 58 7723
Google Scholar
[93] Zuo Y, Liu C, Ding L, Qiao R, Tian J, Liu C, Wang Q, Xue G, You Y, Guo Q, Wang J, Fu Y, Liu K, Zhou X, Hong H, Wu M, Lu X, Yang R, Zhang G, Yu D, Wang E, Bai X, Ding F, Liu K 2022 Nat. Commun. 13 1007
Google Scholar
[94] Zhao R, Zhao X, Liu Z, Ding F, Liu Z 2017 Nanoscale 9 3561
Google Scholar
[95] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H j 2009 Adv. Mater. 21 2777
Google Scholar
[96] Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K I, Mizuno S 2012 Carbon 50 57
Google Scholar
[97] Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y 2019 Small 15 1805395
Google Scholar
[98] Braeuninger-Weimer P, Brennan B, Pollard A J, Hofmann S 2016 Chem. Mater. 28 8905
Google Scholar
[99] Wang Z J, Liang Z, Kong X, Zhang X, Qiao R, Wang J, Zhang S, Zhang Z, Xue C, Cui G, Zhang Z, Zou D, Liu Z, Li Q, Wei W, Zhou X, Tang Z, Yu D, Wang E, Liu K, Ding F, Xu X 2022 Nano Lett. 22 4661
Google Scholar
[100] Zhang Z, Xu X, Qiu L, Wang S, Wu T, Ding F, Peng H, Liu K 2017 Adv. Sci. 4 1700087
Google Scholar
[101] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966
Google Scholar
[102] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238
Google Scholar
[103] Xu X, Lin C, Fu R, Wang S, Pan R, Chen G, Shen Q, Liu C, Guo X, Wang Y, Zhao R, Liu K, Luo Z, Hu Z, Li H 2016 AIP Adv. 6 025026
Google Scholar
[104] Liu L, Li T, Ma L, Li W, Gao S, Sun W, Dong R, Zou X, Fan D, Shao L, Gu C, Dai N, Yu Z, Chen X, Tu X, Nie Y, Wang P, Wang J, Shi Y, Wang X 2022 Nature 605 69
Google Scholar
[105] Chen L, Liu B, Ge M, Ma Y, Abbas A N, Zhou C 2015 ACS Nano 9 8368
Google Scholar
[106] Deshpande S, Heo J, Das A, Bhattacharya P 2013 Nat. Commun. 4 1675
Google Scholar
[107] Kim I H, Park H S, Park Y J, Kim T 1998 Appl. Phys. Lett. 73 1634
Google Scholar
[108] Wang R, Koch N, Martin J, Sadofev S 2023 Phys. Status. Solidi-R 17 2200476
Google Scholar
[109] Zhang Z, Ding M, Cheng T, Qiao R, Zhao M, Luo M, Wang E, Sun Y, Zhang S, Li X, Zhang Z, Mao H, Liu F, Fu Y, Liu K, Zou D, Liu C, Wu M, Fan C, Zhu Q, Wang X, Gao P, Li Q, Liu K, Zhang Y, Bai X, Yu D, Ding F, Wang E, Liu K 2022 Nat. Nanotechnol. 17 1258
Google Scholar
[110] Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249
Google Scholar
[111] Jiang S, Hong M, Wei W, Zhao L, Zhang N, Zhang Z, Yang P, Gao N, Zhou X, Xie C 2018 Commun. Chem. 1 17
Google Scholar
[112] Wu K, Chen B, Yang S, Wang G, Kong W, Cai H, Aoki T, Soignard E, Marie X, Yano A 2016 Nano Lett. 16 5888
Google Scholar
[113] Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D 2017 Small 13 1604179
Google Scholar
[114] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513
Google Scholar
[115] Wang X, He J, Zhou B, Zhang Y, Wu J, Hu R, Liu L, Song J, Qu J 2018 Angew. Chem. Ger. Edit 130 8804
Google Scholar
[116] Yuhara J, Shimazu H, Ito K, Ohta A, Araidai M, Kurosawa M, Nakatake M, Le Lay G 2018 ACS Nano 12 11632
Google Scholar
[117] Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 1901017
Google Scholar
[118] Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q 2019 Adv. Mater. 31 1807874
Google Scholar
[119] Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009
Google Scholar
[120] Yuan Q, Yakobson B I, Ding F 2014 J. Phys. Chem. Lett. 5 3093
Google Scholar
[121] Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2017 J. Am. Chem. Soc. 139 482
Google Scholar
[122] Li J, Li Y, Yin J, Ren X, Liu X, Jin C, Guo W 2016 Small 12 3645
Google Scholar
[123] Wang S, Dearle A E, Maruyama M, Ogawa Y, Okada S, Hibino H, Taniyasu Y 2019 Adv. Mater. 31 1900880
Google Scholar
[124] Li P, Wei W, Zhang M, Mei Y, Chu P K, Xie X, Yuan Q, Di Z 2020 Nano Today 34 100908
Google Scholar
[125] Nie S, Wofford J M, Bartelt N C, Dubon O D, McCarty K F 2011 Phys. Rev. B 84 155425
Google Scholar
[126] Griep M H, Sandoz-Rosado E, Tumlin T M, Wetzel E 2016 Nano Lett. 16 1657
Google Scholar
[127] Dai J, Wang D, Zhang M, Niu T, Li A, Ye M, Qiao S, Ding G, Xie X, Wang Y 2016 Nano Lett. 16 3160
Google Scholar
[128] Driver S, Toomes R, Woodruff D 2016 Surf. Sci. 646 114
Google Scholar
[129] Bets K V, Gupta N, Yakobson B I 2019 Nano Lett. 19 2027
Google Scholar
[130] Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H S P, Pan S, Li R, Chao T A, Chueh W C, Zhang Y 2020 Nature 579 219
Google Scholar
[131] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
Google Scholar
[132] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191
Google Scholar
[133] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
Google Scholar
[134] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706
Google Scholar
[135] Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074
Google Scholar
[136] Hou Y, Wang B, Zhan L, Qing F, Wang X, Niu X, Li X 2020 Mater. Today 36 10
Google Scholar
[137] Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443
Google Scholar
[138] Wu M, Zhang Z, Xu X, Zhang Z, Duan Y, Dong J, Qiao R, You S, Wang L, Qi J, Zou D, Shang N, Yang Y, Li H, Zhu L, Sun J, Yu H, Gao P, Bai X, Jiang Y, Wang Z J, Ding F, Yu D, Wang E, Liu K 2020 Nature 581 406
Google Scholar
[139] Li Y, Sun L, Chang Z, Liu H, Wang Y, Liang Y, Chen B, Ding Q, Zhao Z, Wang R, Wei Y, Peng H, Lin L, Liu Z 2020 Adv. Mater. 32 2002034
Google Scholar
[140] Li L, Ma T, Yu W, Zhu M, Li J, Chen Z, Li H, Zhao M, Teng J, Tian B, Su C, Loh K P 2021 2D Mater. 8 035019
Google Scholar
[141] Wan Y, Fu J H, Chuu C P, Tung V, Shi Y, Li L J 2022 Chem. Soc. Rev. 51 803
Google Scholar
[142] Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286
Google Scholar
[143] Zhang Z, Penev E S, Yakobson B I 2016 Nat. Chem. 8 525
Google Scholar
[144] Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W 2017 Adv. Funct. Mater. 27 1603300
Google Scholar
[145] Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Edit. 52 3156
Google Scholar
[146] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563
Google Scholar
[147] Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816
Google Scholar
[148] Liu H, Gao J, Zhao J 2013 Sci. Rep. -UK 3 3238
Google Scholar
[149] Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P, Wu K 2018 Sci. Bull. 63 282
Google Scholar
[150] Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K, Chen L 2017 Phys. Rev. Mater. 1 021001
Google Scholar
[151] Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44
Google Scholar
[152] Wu R, Eltinge S, Drozdov I K, Gozar A, Zahl P, Sadowski J T, Ismail-Beigi S, Božović I 2022 Nat. Chem. 14 377
Google Scholar
[153] Yang W, Berthou S, Lu X, Wilmart Q, Denis A, Rosticher M, Taniguchi T, Watanabe K, Fève G, Berroir J M, Zhang G, Voisin C, Baudin E, Plaçais B 2018 Nat. Nanotechnol. 13 47
Google Scholar
[154] Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy B J 2019 Nat. Rev. Phys. 1 112
Google Scholar
[155] Hu S, Lozada-Hidalgo M, Wang F, Mishchenko A, Schedin F, Nair R R, Hill E, Boukhvalov D, Katsnelson M, Dryfe R A 2014 Nature 516 227
Google Scholar
[156] Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D 2013 Science 342 614
Google Scholar
[157] Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160
Google Scholar
[158] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A-P, Gu G 2014 Science 343 163
Google Scholar
[159] Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91
Google Scholar
[160] Ma K Y, Zhang L, Jin S, Wang Y, Yoon S I, Hwang H, Oh J, Jeong D S, Wang M, Chatterjee S, Kim G, Jang A R, Yang J, Ryu S, Jeong H Y, Ruoff R S, Chhowalla M, Ding F, Shin H S 2022 Nature 606 88
Google Scholar
[161] Liu Z, Gong Y, Zhou W, Ma L, Yu J, Idrobo J C, Jung J, MacDonald A H, Vajtai R, Lou J, Ajayan P M 2013 Nat. Commun. 4 2541
Google Scholar
[162] Caneva S, Weatherup R S, Bayer B C, Blume R, Cabrero-Vilatela A, Braeuninger-Weimer P, Martin M-B, Wang R, Baehtz C, Schloegl R, Meyer J C, Hofmann S 2016 Nano Lett. 16 1250
Google Scholar
[163] Liu D, Chen X, Yan Y, Zhang Z, Jin Z, Yi K, Zhang C, Zheng Y, Wang Y, Yang J, Xu X, Chen J, Lu Y, Wei D, Wee A T S, Wei D 2019 Nat. Commun. 10 1188
Google Scholar
[164] Jang A R, Hong S, Hyun C, Yoon S I, Kim G, Jeong H Y, Shin T J, Park S O, Wong K, Kwak S K, Park N, Yu K, Choi E, Mishchenko A, Withers F, Novoselov K S, Lim H, Shin H S 2016 Nano Lett. 16 3360
Google Scholar
[165] Biswas A, Ruan Q, Lee F, Li C, Iyengar S A, Puthirath A B, Zhang X, Kannan H, Gray T, Birdwell A G, Neupane M R, Shah P B, Ruzmetov D A, Ivanov T G, Vajtai R, Tripathi M, Dalton A, Yakobson B I, Ajayan P M 2023 Appl. Mater. Today 30 101734
Google Scholar
[166] Lee Y H, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin C T, Huang J K, Chang M T, Chang C S 2013 Nano Lett. 13 1852
Google Scholar
[167] Zhang Y, Zhang Y, Ji Q, Ju J, Yuan H, Shi J, Gao T, Ma D, Liu M, Chen Y 2013 ACS Nano 7 8963
Google Scholar
[168] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554
Google Scholar
[169] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J-C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754
Google Scholar
[170] Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036
Google Scholar
[171] Hu J, Quan W, Yang P, Cui F, Liu F, Zhu L, Pan S, Huan Y, Zhou F, Fu J, Zhang G, Gao P, Zhang Y 2023 ACS Nano 17 312
Google Scholar
[172] Yang P, Wang D, Zhao X, Quan W, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X, Zhang Y 2022 Nat. Commun. 13 3238
Google Scholar
[173] Aljarb A, Fu J H, Hsu C C, Chuu C P, Wan Y, Hakami M, Naphade D R, Yengel E, Lee C J, Brems S, Chen T A, Li M Y, Bae S H, Hsu W T, Cao Z, Albaridy R, Lopatin S, Chang W H, Anthopoulos T D, Kim J, Li L J, Tung V 2020 Nat. Mater. 19 1300
Google Scholar
[174] Aljarb A, Cao Z, Tang H L, Huang J K, Li M, Hu W, Cavallo L, Li L J 2017 ACS Nano 11 9215
Google Scholar
[175] Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z, Ding D, Hong H, Zheng P, Zhang Z, Zhang Z, Zhang S, Cui G, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y, Xue G, Fang X, Tian J, Wu M, Guo Y, Yao Z, Jiao Q, Liu L, Gao P, Li Q, Yang R, Zhang G, Tang Z, Yu D, Wang E, Lu J, Zhao Y, Wu S, Ding F, Liu K 2022 Nat. Nanotechnol. 17 33
Google Scholar
[176] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Nat. Nanotechnol. 13 246
Google Scholar
[177] Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A 2015 ACS Nano 9 4611
Google Scholar
[178] Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D, Zhang G 2020 Nat. Electron. 3 711
Google Scholar
[179] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193
Google Scholar
[180] Yin J, Liu X, Lu W, Li J, Cao Y, Li Y, Xu Y, Li X, Zhou J, Jin C, Guo W 2015 Small 11 5375
Google Scholar
[181] Zheng P, Wei W, Liang Z, Qin B, Tian J, Wang J, Qiao R, Ren Y, Chen J, Huang C, Zhou X, Zhang G, Tang Z, Yu D, Ding F, Liu K, Xu X 2023 Nat. Commun. 14 592
Google Scholar
[182] Ma Z, Wang S, Deng Q, Hou Z, Zhou X, Li X, Cui F, Si H, Zhai T, Xu H 2020 Small 16 2000596
Google Scholar
[183] Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532
Google Scholar
[184] Choi S H, Kim H J, Song B, Kim Y I, Han G, Nguyen H T T, Ko H, Boandoh S, Choi J H, Oh C S, Cho H J, Jin J W, Won Y S, Lee B H, Yun S J, Shin B G, Jeong H Y, Kim Y M, Han Y K, Lee Y H, Kim S M, Kim K K 2021 Adv. Mater. 33 2006601
Google Scholar
[185] Li J, Wang S, Jiang Q, Qian H, Hu S, Kang H, Chen C, Zhan X, Yu A, Zhao S, Zhang Y, Chen Z, Sui Y, Qiao S, Yu G, Peng S, Jin Z, Liu X 2021 Small 17 2100743
Google Scholar
[186] Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J-A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001
Google Scholar
[187] Grønborg S S, Ulstrup S, Bianchi M, Dendzik M, Sanders C E, Lauritsen J V, Hofmann P, Miwa J A 2015 Langmuir 31 9700
Google Scholar
[188] Pan S, Yang P, Zhu L, Hong M, Xie C, Zhou F, Shi Y, Huan Y, Cui F, Zhang Y 2021 Nanotechnology 32 095601
Google Scholar
[189] Tumino F, Grazianetti C, Martella C, Ruggeri M, Russo V, Li Bassi A, Molle A, Casari C S 2021 J. Phys. Chem. C 125 9479
Google Scholar
[190] Tay R Y, Park H J, Ryu G H, Tan D, Tsang S H, Li H, Liu W, Teo E H T, Lee Z, Lifshitz Y, Ruoff R S 2016 Nanoscale 8 2434
Google Scholar
[191] Uchida Y, Iwaizako T, Mizuno S, Tsuji M, Ago H 2017 Phys. Chem. Chem. Phys. 19 8230
Google Scholar
[192] Taslim A B, Nakajima H, Lin Y C, Uchida Y, Kawahara K, Okazaki T, Suenaga K, Hibino H, Ago H 2019 Nanoscale 11 14668
Google Scholar
[193] Butashin A V, Vlasov V P, Kanevskii V M, Muslimov A E, Fedorov V A 2012 Crystallogr. Rep.+ 57 824
Google Scholar
[194] Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598
Google Scholar
[195] Li X, Shi X, Marian D, Soriano D, Cusati T, Iannaccone G, Fiori G, Guo Q, Zhao W, Wu Y 2023 Sci. Adv. 9 eade5706
Google Scholar
[196] Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J, Zhu X Y 2020 Science 367 903
Google Scholar
[197] Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P 2022 Nat. Chem. 14 25
Google Scholar
[198] Zhang X, Huangfu L, Gu Z, Xiao S, Zhou J, Nan H, Gu X, Ostrikov K 2021 Small 17 2007312
Google Scholar
-
图 2 (a)中心对称和(b)非中心对称二维材料的原子结构示意图. 图(a)中灰色圆球对应同种元素原子; 图(b)中橙色圆球和蓝色圆球分别对应2种元素原子. 中心对称的结构翻转180°后可以复原, 非中心对称的结构翻转180°后无法复原
Fig. 2. Schematic diagrams of atomic structure of (a) centrosymmetric and (b) non-centrosymmetric 2D materials. Gray balls in Fig. (a) correspond to the same kind of atoms, orange and blue balls in Fig. (b) correspond to two kinds of atoms, respectively. A centrosymmetric structure can be restored after being turned over 180°, and a non-centrosymmetric structure cannot be restored after being turned over 180°.
图 4 (a) Ge (110)面单向排列石墨烯SEM图[142]; (b)单晶单层石墨烯的HRTEM图[142]; (c)石墨烯种子沿Ge (110)面的[
$ \overline 1 10 $ ]方向单向排列的AFM图[127]; (d), (e)石墨烯成核与台阶边缘对接的单向排列示意图[127]Fig. 4. (a) SEM image of unidirectional graphene grown on Ge (110) surface[142]; (b) HRTEM image of single crystal monolayer graphene[142]; (c) AFM image of graphene seeds aligned along [
$ \overline 1 10 $ ] direction of Ge (110) surface[127]; (d), (e) schematic illustration of graphene nucleation docking with the step edge for unidirectional alignment[127].图 5 (a) Cu (110)面单向排列的hBN SEM图; (b) hBN晶畴拼接处的TEM图, 插图为低倍TEM图; (c), (d) H2在1000 ℃下经30 min刻蚀Cu(110)和Cu(111)上hBN的SEM图; (e) hBN晶格之字形边缘与Cu(110)表面的Cu
$ \langle {211} \rangle $ 方向台阶结合原子示意图; (f)不同hBN边缘与Cu (110)表面的Cu$ \langle {211} \rangle $ 方向台阶形成能[158]Fig. 5. (a) SEM image of as-grown unidirectionally aligned hBN domains on Cu (110) substrate; (b) TEM images of neighboring merged hBN domains, inset shows the same image at a lower magnification; (c), (d) SEM images of hBN film as-grown on Cu(110) and Cu(111) surfaces after H2 etching at 1, 000 ℃ for 30 min; (e) atomic configuration of a zigzag edge of hBN lattice attaching to the Cu
$ \left\langle {211} \right\rangle $ atomic step edge on the vicinal Cu (110) surface; (f) formation energies of various hBN edges attached to a Cu$\langle {211}\rangle $ step edge of vicinal Cu(110) substrate[158].图 6 (a), (b)制备单晶Au (111)的示意图及CVD法在其表面生长MoS2的SEM图[169]; (c)—(e) Au (607) , Au (2 1 11) 面的MoS2 SEM以及拉曼图[170]; (f), (h)MoS2形态变化示意图; (g), (i)不同S/Mo比例下制备的2D MoS2三角形、1D MoS2纳米带SEM图[171]
Fig. 6. (a), (b) Schematic illustration of processes of single crystal Au(111) formation and SEM image of MoS2 grown on its surface by CVD method[169]; (c)–(e) SEM images and Raman spectra of MoS2 on Au (607), Au (2 1 11)facets[170]; (f), (h) schematic illustration of the morphological evolution of MoS2; (g), (i) SEM images of 2D monolayer MoS2 triangles and 1D MoS2 nanoribbons at different S/Mo ratios[171].
图 7 (a) O2刻蚀WS2薄膜后的SEM图; (b)对齐WS2岛拼接区域STEM图; (c) WS2晶格STEM图; (d) 2 inch单层WS2薄膜光学图; (e) a-Al2O3独立WS2晶畴光学图; (f), (g)WS2晶畴AFM图, 台阶方向
$\langle 1\bar 1 01 \rangle$ [174]Fig. 7. (a) SEM image of WS2 films after O2 etching; (b) STEM image of merged area of aligned WS2 islands; (c) STEM image of WS2 lattice; (d) photograph of 2 inch WS2 monolayer thin film; (e) optical image of individual WS2 islands on a-Al2O3; (f), (g) AFM image of a WS2 island, the direction of the steps is
$ \langle1\bar 1 01 \rangle$ [174].图 8 不同成核位置导致不同生长结果的原理示意图 (a)同时在台阶边缘和台阶平面处成核会导致正反取向; (b)只在台阶边缘处成核会导致单一取向
Fig. 8. Schematic diagrams of different growth results at different nucleation positions: (a) Positive and negative orientation when nucleation occur on both step edges and terrace; (b) single orientation when nucleation only occurs on step edges.
图 9 (a)退火前c-Al2O3表面; (b)退火中c-Al2O3表面; (c)长时间退火后c-Al2O3表面; (d)MoS2边缘同氧空位缺陷台阶与无氧空位平行台阶结合能; (e)反平行MoS2晶畴跨不同台阶(Ⅰ, Ⅱ和Ⅲ)能量; (f)3种台阶边缘处MoS2边缘[180]
Fig. 9. (a) Original c-Al2O3 surface before annealing; (b) original c-Al2O3 surface during annealing; (c) original c-Al2O3 surface after a long annealing time; (d) binding energy of a MoS2 grain on a straight parallel step with O vacancy and on a defective step without O vacancy; (e) energy difference between antiparallel MoS2 grains that cross different types of step edges (Ⅰ, Ⅱ and Ⅲ); (f) MoS2 grain on three types of step edges[180].
图 10 (a), (b)穿过c-Al2O3台阶边缘的2个反平行WS2晶粒示意图; (c) 2个反平行WS2晶粒之间的能量差; (d), (e)穿过a-Al2O3台阶边缘的2个反平行WS2(MoS2)晶粒示意图; (f) 2个反平行WS2(MoS2)晶粒之间的能量差, 沿着不同方向的台阶都是为了打破反平行线[180]
Fig. 10. (a), (b) Schematic diagrams of two antiparallel WS2 grains that across a step edge of c-Al2O3; (c) energy difference between two antiparallel WS2 grains; (d), (e) schematic diagrams of two antiparallel WS2 (MoS2) grains that across a step edge of a-Al2O3; (f) energy difference between two antiparallel WS2 (MoS2) grains. Steps along different directions all work for breaking of antiparallel alignments[180].
表 1 二维材料的应用领域及其挑战
Table 1. Applications and future challenges of two-dimensional materials.
领域 应用方向 优势 挑战 电子 晶体管、传感器、存储设备、互连、柔性电子产品、透明导电薄膜 高载流子迁移率、可调带隙、优异的机械和化学稳定性 可扩展性、可重复性、接口工程、设备集成、环境稳定性 光电子 LEDs、太阳能电池、光电探测、光调制器、吸收器 高载流子迁移率、可调带隙、优异的光吸收和发射 可重复性、环境稳定性、界面能源、设备集成、成本 催化 水分解、CO2还原、析氢反应、氧化还原反应 高比表面积、可调电子和化学性能、催化活性 可扩展性、反应稳定性、优异的选择性、成本 储能 电池、超级电容器、燃料电池、电催化、储氢 高表面积、可调的电子和化学性能、优异的电化学性能 可扩展性、反应稳定性、选择性、成本、毒性 传感器 气体、生物、应变传感器 灵敏度高、选择性好、电子和化学性能可调、稳定性好 可扩展性、环境稳定性、选择性、设备集成 生物医学 药物输送、生物传感、组织工程、生物成像 生物相容性、高表面积、可调的电子和化学性质、稳定性 选择性、可扩展性、毒性、生物环境稳定性、监管批准 环境 水处理、空气净化、能量收集 高表面积、电子和化学性能可调、优异的光催化和电催化 可扩展性、环境稳定性、选择性、成本 表 2 衬底台阶调控TMDs生长[180]
Table 2. Controversial growth behaviours of TMDs on substrates with steps[180].
Substrate TMDs Alignment/% Symmetry
breakingRef. a-Al2O3 WS2 99 √ [174] a-Al2O3 MoS2 86 √ [181] c-Al2O3 MoS2 99 √ [16] c-Al2O3 WS2 >90 √ [182] c-Al2O3 WSe2 92 √ [105] Au(533) WS2 >90 √ [183] Au(111) MoS2 99 √ [184] Au(111) MoS2 98 √ [169] β-Ga2O3 MoS2 >90 √ [172] c-Al2O3 MoS2 50 × [177] c-Al2O3 MoS2 50 × [178] c-Al2O3 MoS2 60 × [173] c-Al2O3 MoS2 50 × [185] c-Al2O3 MoS2 56 × [176] Au(111) MoS2 50 × [186] Au(111) MoS2 50 × [187] Ag(111) MoS2 50 × [188] -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[3] Huang H, Zha J, Li S, Tan C 2022 Chinese Chem. Lett. 33 163
Google Scholar
[4] Zhang J, Tan B, Zhang X, Gao F, Hu Y, Wang L, Duan X, Yang Z, Hu P 2021 Adv. Mater. 33 2000769
Google Scholar
[5] Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552
Google Scholar
[6] Miró P, Ghorbani-Asl M, Heine T 2014 Angew. Chem. Int. Edit. 53 3015
Google Scholar
[7] Pi L, Li L, Liu K, Zhang Q, Li H, Zhai T 2019 Adv. Funct. Mater. 29 1904932
Google Scholar
[8] Si J, Yu J, Shen Y, Zeng M, Fu L 2021 Small Struct. 2 2000101
Google Scholar
[9] Lin Z, Wang C, Chai Y 2020 Small 16 2003319
Google Scholar
[10] Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444
Google Scholar
[11] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H 2017 Chem. Rev. 117 6225
Google Scholar
[12] Koman V B, Liu P, Kozawa D, Liu A T, Cottrill A L, Son Y, Lebron J A, Strano M S 2018 Nat. Nanotechnol. 13 819
Google Scholar
[13] Zhao C, Tan C, Lien D-H, Song X, Amani M, Hettick M, Nyein H Y Y, Yuan Z, Li L, Scott M C, Javey A 2020 Nat. Nanotechnol. 15 53
Google Scholar
[14] Zhu W, Low T, Wang H, Ye P, Duan X 2019 2D Mater. 6 032004
Google Scholar
[15] Conti S, Pimpolari L, Calabrese G, Worsley R, Majee S, Polyushkin D K, Paur M, Pace S, Keum D H, Fabbri F, Iannaccone G, Macucci M, Coletti C, Mueller T, Casiraghi C, Fiori G 2020 Nat. Commun. 11 3566
Google Scholar
[16] Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y, Wang X 2021 Nat. Nanotechnol. 16 1201
Google Scholar
[17] Kim K S, Lee D, Chang C S, Seo S, Hu Y, Cha S, Kim H, Shin J, Lee J H, Lee S 2023 Nature 614 88
Google Scholar
[18] Wang J, Huang C, You Y, Guo Q, Xue G, Hong H, Jiao Q, Yu D, Du L, Zhao Y, Liu K 2022 J. Phys. Chem. C 126 3797
Google Scholar
[19] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H 2019 Nature 573 507
Google Scholar
[20] Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338
Google Scholar
[21] Wang M, Huang M, Luo D, Li Y, Choe M, Seong W K, Kim M, Jin S, Wang M, Chatterjee S 2021 Nature 596 519
Google Scholar
[22] Chen Z, Xie C, Wang W, Zhao J, Liu B, Shan J, Wang X, Hong M, Lin L, Huang L 2021 Sci. Adv. 7 eabk0115
Google Scholar
[23] Shi Z, Wang X, Li Q, Yang P, Lu G, Jiang R, Wang H, Zhang C, Cong C, Liu Z, Wu T, Wang H, Yu Q, Xie X 2020 Nat. Commun. 11 849
Google Scholar
[24] Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y 2011 J. Am. Chem. Soc. 133 17548
Google Scholar
[25] Wang H, Xue X, Jiang Q, Wang Y, Geng D, Cai L, Wang L, Xu Z, Yu G 2019 J. Am. Chem. Soc. 141 11004
Google Scholar
[26] Yazyev O V, Louie S G 2010 Nat. Mater. 9 806
Google Scholar
[27] Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720
Google Scholar
[28] Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222
Google Scholar
[29] Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X 2021 Adv. Sci. 8 2003834
Google Scholar
[30] Mak K F, Shan J 2016 Nat. Photonics 10 216
Google Scholar
[31] Lv L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331
Google Scholar
[32] Li J, Ding Y, Zhang D W, Zhou P 2019 Acta Phys. -Chim. Sin. 35 1058
Google Scholar
[33] Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311
Google Scholar
[34] Zhou X, Cheng J, Zhou Y, Cao T, Hong H, Liao Z, Wu S, Peng H, Liu K, Yu D 2015 J. Am. Chem. Soc. 137 7994
Google Scholar
[35] Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987
Google Scholar
[36] Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z 2019 Nat. Photonics 13 754
Google Scholar
[37] Hong H, Wu C, Zhao Z, Zuo Y, Wang J, Liu C, Zhang J, Wang F, Feng J, Shen H, Yin J, Wu Y, Zhao Y, Liu K, Gao P, Meng S, Wu S, Sun Z, Liu K, Xiong J 2021 Nat. Photonics 15 510
Google Scholar
[38] Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L 2020 Nat. Nanotechnol. 15 118
Google Scholar
[39] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722
Google Scholar
[40] El-Kady M F, Shao Y, Kaner R B 2016 Nat. Rev. Mater. 1 16033
Google Scholar
[41] Xia J, Chen F, Li J, Tao N 2009 Nat. Nanotechnol. 4 505
Google Scholar
[42] Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F 2016 Nat. Mater. 15 48
Google Scholar
[43] Qin B, Wang D, Hong T, Wang Y, Liu D, Wang Z, Gao X, Ge Z H, Zhao L D 2023 Nat. Commun. 14 1366
Google Scholar
[44] Kotakoski J, Meyer J C 2012 Phys. Rev. B 85 195447
Google Scholar
[45] Lee M, Renshof J R, van Zeggeren K J, Houmes M J, Lesne E, Šiškins M, van Thiel T C, Guis R H, van Blankenstein M R, Verbiest G J 2022 Adv. Mater. 34 2204630
Google Scholar
[46] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechnol. 8 119
Google Scholar
[47] Ye F, Lee J, Feng P X L 2018 Nano Lett. 18 1678
Google Scholar
[48] Mehmood A, Mubarak N, Khalid M, Walvekar R, Abdullah E, Siddiqui M, Baloch H A, Nizamuddin S, Mazari S 2020 J. Environ. Chem. Eng. 8 103743
Google Scholar
[49] Jiang H, Zheng L, Liu Z, Wang X 2020 InfoMat 2 1077
Google Scholar
[50] Liang J, Wang J, Zhang Z, Su Y, Guo Y, Qiao R, Song P, Gao P, Zhao Y, Jiao Q, Wu S, Sun Z, Yu D, Liu K 2019 Adv. Mater. 31 1808160
Google Scholar
[51] Liu T, Cui Z, Li X, Cui H, Liu Y 2020 ACS Omega 6 988
Google Scholar
[52] Jiang F, Zhao W S, Zhang J 2020 Microelectron. Eng. 225 111279
Google Scholar
[53] 徐小志, 张晓闻, 王然, 曾凡凯, 周涛 2021 华南师范大学学报(自然科学版) 53 1
Xu X Z, Zhang X W, Wang R, Zeng F K, Zhou T 2021 J. South China Normal Univ. (Natural Science Edition) 53 1
[54] Xu X, Liu K 2022 Sci. Bull. 67 1410
Google Scholar
[55] Liu C, Wang L, Qi J, Liu K 2020 Adv. Mater. 32 2000046
Google Scholar
[56] 刘天瑶, 刘灿, 刘开辉 2022 71 108103
Google Scholar
Liu T Y, Liu C, Liu K H 2022 Acta Phys. Sin. 71 108103
Google Scholar
[57] Zhang Z, Forti S, Meng W, Pezzini S, Hu Z, Coletti C, Wang X, Liu K 2023 2D Mater. 10 032001
Google Scholar
[58] Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110
Google Scholar
[59] Luo Z, Lu Y, Singer D W, Berck M E, Somers L A, Goldsmith B R, Johnson A C 2011 Chem. Mater. 23 1441
Google Scholar
[60] Han G H, Gunes F, Bae J J, Kim E S, Chae S J, Shin H J, Choi J Y, Pribat D, Lee Y H 2011 Nano Lett. 11 4144
Google Scholar
[61] Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43
Google Scholar
[62] Safron N S, Kim M, Gopalan P, Arnold M S 2012 Adv. Mater. 24 1041
Google Scholar
[63] Kim H, Mattevi C, Calvo M R, Oberg J C, Artiglia L, Agnoli S, Hirjibehedin C F, Chhowalla M, Saiz E 2012 ACS Nano 6 3614
Google Scholar
[64] Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nat. Chem. 11 730
Google Scholar
[65] Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930
Google Scholar
[66] Xu X, Qiao R, Liang Z, Zhang Z, Wang R, Zeng F, Cui G, Zhang X, Zou D, Guo Y, Liu C, Fu Y, Zhou X, Wu M, Wang Z J, Zhao Y, Wang E, Tang Z, Yu D, Liu K 2022 Nano Res. 15 919
Google Scholar
[67] Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 P. Natl. A. Sci. 109 7992
Google Scholar
[68] Zang X, Zhou Q, Chang J, Teh K S, Wei M, Zettl A, Lin L 2017 Adv. Mater. Interfaces 4 1600783
Google Scholar
[69] Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096
Google Scholar
[70] Vlassiouk I V, Stehle Y, Pudasaini P R, Unocic R R, Rack P D, Baddorf A P, Ivanov I N, Lavrik N V, List F, Gupta N, Bets K V, Yakobson B I, Smirnov S N 2018 Nat. Mater. 17 318
Google Scholar
[71] Chung J W, Dai Z R, Ohuchi F S 1998 J. Cryst. Growth 186 137
Google Scholar
[72] Cun H, Macha M, Kim H, Liu K, Zhao Y, LaGrange T, Kis A, Radenovic A 2019 Nano Res. 12 2646
Google Scholar
[73] Ishihara S, Hibino Y, Sawamoto N, Machida H, Wakabayashi H, Ogura A 2018 MRS Adv. 3 379
Google Scholar
[74] Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano 9 2080
Google Scholar
[75] Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164
Google Scholar
[76] Zhang Z, Yang X, Liu K, Wang R 2022 Adv. Sci. 9 2105201
Google Scholar
[77] Young E P, Park J, Bai T, Choi C, DeBlock R H, Lange M, Poust S, Tice J, Cheung C, Dunn B S 2018 ACS Appl. Nano Mater. 1 4737
Google Scholar
[78] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227
Google Scholar
[79] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656
Google Scholar
[80] Shi J, Chen X, Zhao L, Gong Y, Hong M, Huan Y, Zhang Z, Yang P, Li Y, Zhang Q 2018 Adv. Mater. 30 1804616
Google Scholar
[81] Jiao L, Jie W, Yang Z, Wang Y, Chen Z, Zhang X, Tang W, Wu Z, Hao J 2019 J. Mater. Chem. C 7 2522
Google Scholar
[82] Seo S, Choi H, Kim S Y, Lee J, Kim K, Yoon S, Lee B H, Lee S 2018 Adv. Mater. Interfaces 5 1800524
Google Scholar
[83] Keller B D, Bertuch A, Provine J, Sundaram G, Ferralis N, Grossman J C 2017 Chem. Mater. 29 2024
Google Scholar
[84] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano letters 13 2615
Google Scholar
[85] Shu H, Tao X M, Ding F 2015 Nanoscale 7 1627
Google Scholar
[86] Metin O, Mazumder V, Ozkar S, Sun S 2010 J. Am. Chem. Soc. 132 1468
Google Scholar
[87] Liu S, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2017 ACS Nano 11 3585
Google Scholar
[88] Liu S, Comer J, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2019 Nanoscale 11 5607
Google Scholar
[89] Zhang X, Xu Z, Hui L, Xin J, Ding F 2012 J. Phys. Chem. Lett. 3 2822
Google Scholar
[90] Dong J, Zhang L, Dai X, Ding F 2020 Nat. Commun. 11 5862
Google Scholar
[91] Wang Z J, Dong J, Li L, Dong G, Cui Y, Yang Y, Wei W, Blume R, Li Q, Wang L, Xu X, Liu K, Barroo C, Frenken J W M, Fu Q, Bao X, Schlögl R, Ding F, Willinger M G 2020 ACS Nano 14 1902
Google Scholar
[92] Dong J, Geng D, Liu F, Ding F 2019 Angew. Chem. Int. Edit. 58 7723
Google Scholar
[93] Zuo Y, Liu C, Ding L, Qiao R, Tian J, Liu C, Wang Q, Xue G, You Y, Guo Q, Wang J, Fu Y, Liu K, Zhou X, Hong H, Wu M, Lu X, Yang R, Zhang G, Yu D, Wang E, Bai X, Ding F, Liu K 2022 Nat. Commun. 13 1007
Google Scholar
[94] Zhao R, Zhao X, Liu Z, Ding F, Liu Z 2017 Nanoscale 9 3561
Google Scholar
[95] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H j 2009 Adv. Mater. 21 2777
Google Scholar
[96] Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K I, Mizuno S 2012 Carbon 50 57
Google Scholar
[97] Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y 2019 Small 15 1805395
Google Scholar
[98] Braeuninger-Weimer P, Brennan B, Pollard A J, Hofmann S 2016 Chem. Mater. 28 8905
Google Scholar
[99] Wang Z J, Liang Z, Kong X, Zhang X, Qiao R, Wang J, Zhang S, Zhang Z, Xue C, Cui G, Zhang Z, Zou D, Liu Z, Li Q, Wei W, Zhou X, Tang Z, Yu D, Wang E, Liu K, Ding F, Xu X 2022 Nano Lett. 22 4661
Google Scholar
[100] Zhang Z, Xu X, Qiu L, Wang S, Wu T, Ding F, Peng H, Liu K 2017 Adv. Sci. 4 1700087
Google Scholar
[101] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966
Google Scholar
[102] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238
Google Scholar
[103] Xu X, Lin C, Fu R, Wang S, Pan R, Chen G, Shen Q, Liu C, Guo X, Wang Y, Zhao R, Liu K, Luo Z, Hu Z, Li H 2016 AIP Adv. 6 025026
Google Scholar
[104] Liu L, Li T, Ma L, Li W, Gao S, Sun W, Dong R, Zou X, Fan D, Shao L, Gu C, Dai N, Yu Z, Chen X, Tu X, Nie Y, Wang P, Wang J, Shi Y, Wang X 2022 Nature 605 69
Google Scholar
[105] Chen L, Liu B, Ge M, Ma Y, Abbas A N, Zhou C 2015 ACS Nano 9 8368
Google Scholar
[106] Deshpande S, Heo J, Das A, Bhattacharya P 2013 Nat. Commun. 4 1675
Google Scholar
[107] Kim I H, Park H S, Park Y J, Kim T 1998 Appl. Phys. Lett. 73 1634
Google Scholar
[108] Wang R, Koch N, Martin J, Sadofev S 2023 Phys. Status. Solidi-R 17 2200476
Google Scholar
[109] Zhang Z, Ding M, Cheng T, Qiao R, Zhao M, Luo M, Wang E, Sun Y, Zhang S, Li X, Zhang Z, Mao H, Liu F, Fu Y, Liu K, Zou D, Liu C, Wu M, Fan C, Zhu Q, Wang X, Gao P, Li Q, Liu K, Zhang Y, Bai X, Yu D, Ding F, Wang E, Liu K 2022 Nat. Nanotechnol. 17 1258
Google Scholar
[110] Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249
Google Scholar
[111] Jiang S, Hong M, Wei W, Zhao L, Zhang N, Zhang Z, Yang P, Gao N, Zhou X, Xie C 2018 Commun. Chem. 1 17
Google Scholar
[112] Wu K, Chen B, Yang S, Wang G, Kong W, Cai H, Aoki T, Soignard E, Marie X, Yano A 2016 Nano Lett. 16 5888
Google Scholar
[113] Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D 2017 Small 13 1604179
Google Scholar
[114] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513
Google Scholar
[115] Wang X, He J, Zhou B, Zhang Y, Wu J, Hu R, Liu L, Song J, Qu J 2018 Angew. Chem. Ger. Edit 130 8804
Google Scholar
[116] Yuhara J, Shimazu H, Ito K, Ohta A, Araidai M, Kurosawa M, Nakatake M, Le Lay G 2018 ACS Nano 12 11632
Google Scholar
[117] Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 1901017
Google Scholar
[118] Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q 2019 Adv. Mater. 31 1807874
Google Scholar
[119] Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009
Google Scholar
[120] Yuan Q, Yakobson B I, Ding F 2014 J. Phys. Chem. Lett. 5 3093
Google Scholar
[121] Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2017 J. Am. Chem. Soc. 139 482
Google Scholar
[122] Li J, Li Y, Yin J, Ren X, Liu X, Jin C, Guo W 2016 Small 12 3645
Google Scholar
[123] Wang S, Dearle A E, Maruyama M, Ogawa Y, Okada S, Hibino H, Taniyasu Y 2019 Adv. Mater. 31 1900880
Google Scholar
[124] Li P, Wei W, Zhang M, Mei Y, Chu P K, Xie X, Yuan Q, Di Z 2020 Nano Today 34 100908
Google Scholar
[125] Nie S, Wofford J M, Bartelt N C, Dubon O D, McCarty K F 2011 Phys. Rev. B 84 155425
Google Scholar
[126] Griep M H, Sandoz-Rosado E, Tumlin T M, Wetzel E 2016 Nano Lett. 16 1657
Google Scholar
[127] Dai J, Wang D, Zhang M, Niu T, Li A, Ye M, Qiao S, Ding G, Xie X, Wang Y 2016 Nano Lett. 16 3160
Google Scholar
[128] Driver S, Toomes R, Woodruff D 2016 Surf. Sci. 646 114
Google Scholar
[129] Bets K V, Gupta N, Yakobson B I 2019 Nano Lett. 19 2027
Google Scholar
[130] Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H S P, Pan S, Li R, Chao T A, Chueh W C, Zhang Y 2020 Nature 579 219
Google Scholar
[131] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
Google Scholar
[132] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191
Google Scholar
[133] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
Google Scholar
[134] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706
Google Scholar
[135] Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074
Google Scholar
[136] Hou Y, Wang B, Zhan L, Qing F, Wang X, Niu X, Li X 2020 Mater. Today 36 10
Google Scholar
[137] Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443
Google Scholar
[138] Wu M, Zhang Z, Xu X, Zhang Z, Duan Y, Dong J, Qiao R, You S, Wang L, Qi J, Zou D, Shang N, Yang Y, Li H, Zhu L, Sun J, Yu H, Gao P, Bai X, Jiang Y, Wang Z J, Ding F, Yu D, Wang E, Liu K 2020 Nature 581 406
Google Scholar
[139] Li Y, Sun L, Chang Z, Liu H, Wang Y, Liang Y, Chen B, Ding Q, Zhao Z, Wang R, Wei Y, Peng H, Lin L, Liu Z 2020 Adv. Mater. 32 2002034
Google Scholar
[140] Li L, Ma T, Yu W, Zhu M, Li J, Chen Z, Li H, Zhao M, Teng J, Tian B, Su C, Loh K P 2021 2D Mater. 8 035019
Google Scholar
[141] Wan Y, Fu J H, Chuu C P, Tung V, Shi Y, Li L J 2022 Chem. Soc. Rev. 51 803
Google Scholar
[142] Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286
Google Scholar
[143] Zhang Z, Penev E S, Yakobson B I 2016 Nat. Chem. 8 525
Google Scholar
[144] Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W 2017 Adv. Funct. Mater. 27 1603300
Google Scholar
[145] Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Edit. 52 3156
Google Scholar
[146] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563
Google Scholar
[147] Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816
Google Scholar
[148] Liu H, Gao J, Zhao J 2013 Sci. Rep. -UK 3 3238
Google Scholar
[149] Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P, Wu K 2018 Sci. Bull. 63 282
Google Scholar
[150] Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K, Chen L 2017 Phys. Rev. Mater. 1 021001
Google Scholar
[151] Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44
Google Scholar
[152] Wu R, Eltinge S, Drozdov I K, Gozar A, Zahl P, Sadowski J T, Ismail-Beigi S, Božović I 2022 Nat. Chem. 14 377
Google Scholar
[153] Yang W, Berthou S, Lu X, Wilmart Q, Denis A, Rosticher M, Taniguchi T, Watanabe K, Fève G, Berroir J M, Zhang G, Voisin C, Baudin E, Plaçais B 2018 Nat. Nanotechnol. 13 47
Google Scholar
[154] Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy B J 2019 Nat. Rev. Phys. 1 112
Google Scholar
[155] Hu S, Lozada-Hidalgo M, Wang F, Mishchenko A, Schedin F, Nair R R, Hill E, Boukhvalov D, Katsnelson M, Dryfe R A 2014 Nature 516 227
Google Scholar
[156] Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D 2013 Science 342 614
Google Scholar
[157] Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160
Google Scholar
[158] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A-P, Gu G 2014 Science 343 163
Google Scholar
[159] Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91
Google Scholar
[160] Ma K Y, Zhang L, Jin S, Wang Y, Yoon S I, Hwang H, Oh J, Jeong D S, Wang M, Chatterjee S, Kim G, Jang A R, Yang J, Ryu S, Jeong H Y, Ruoff R S, Chhowalla M, Ding F, Shin H S 2022 Nature 606 88
Google Scholar
[161] Liu Z, Gong Y, Zhou W, Ma L, Yu J, Idrobo J C, Jung J, MacDonald A H, Vajtai R, Lou J, Ajayan P M 2013 Nat. Commun. 4 2541
Google Scholar
[162] Caneva S, Weatherup R S, Bayer B C, Blume R, Cabrero-Vilatela A, Braeuninger-Weimer P, Martin M-B, Wang R, Baehtz C, Schloegl R, Meyer J C, Hofmann S 2016 Nano Lett. 16 1250
Google Scholar
[163] Liu D, Chen X, Yan Y, Zhang Z, Jin Z, Yi K, Zhang C, Zheng Y, Wang Y, Yang J, Xu X, Chen J, Lu Y, Wei D, Wee A T S, Wei D 2019 Nat. Commun. 10 1188
Google Scholar
[164] Jang A R, Hong S, Hyun C, Yoon S I, Kim G, Jeong H Y, Shin T J, Park S O, Wong K, Kwak S K, Park N, Yu K, Choi E, Mishchenko A, Withers F, Novoselov K S, Lim H, Shin H S 2016 Nano Lett. 16 3360
Google Scholar
[165] Biswas A, Ruan Q, Lee F, Li C, Iyengar S A, Puthirath A B, Zhang X, Kannan H, Gray T, Birdwell A G, Neupane M R, Shah P B, Ruzmetov D A, Ivanov T G, Vajtai R, Tripathi M, Dalton A, Yakobson B I, Ajayan P M 2023 Appl. Mater. Today 30 101734
Google Scholar
[166] Lee Y H, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin C T, Huang J K, Chang M T, Chang C S 2013 Nano Lett. 13 1852
Google Scholar
[167] Zhang Y, Zhang Y, Ji Q, Ju J, Yuan H, Shi J, Gao T, Ma D, Liu M, Chen Y 2013 ACS Nano 7 8963
Google Scholar
[168] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554
Google Scholar
[169] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J-C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754
Google Scholar
[170] Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036
Google Scholar
[171] Hu J, Quan W, Yang P, Cui F, Liu F, Zhu L, Pan S, Huan Y, Zhou F, Fu J, Zhang G, Gao P, Zhang Y 2023 ACS Nano 17 312
Google Scholar
[172] Yang P, Wang D, Zhao X, Quan W, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X, Zhang Y 2022 Nat. Commun. 13 3238
Google Scholar
[173] Aljarb A, Fu J H, Hsu C C, Chuu C P, Wan Y, Hakami M, Naphade D R, Yengel E, Lee C J, Brems S, Chen T A, Li M Y, Bae S H, Hsu W T, Cao Z, Albaridy R, Lopatin S, Chang W H, Anthopoulos T D, Kim J, Li L J, Tung V 2020 Nat. Mater. 19 1300
Google Scholar
[174] Aljarb A, Cao Z, Tang H L, Huang J K, Li M, Hu W, Cavallo L, Li L J 2017 ACS Nano 11 9215
Google Scholar
[175] Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z, Ding D, Hong H, Zheng P, Zhang Z, Zhang Z, Zhang S, Cui G, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y, Xue G, Fang X, Tian J, Wu M, Guo Y, Yao Z, Jiao Q, Liu L, Gao P, Li Q, Yang R, Zhang G, Tang Z, Yu D, Wang E, Lu J, Zhao Y, Wu S, Ding F, Liu K 2022 Nat. Nanotechnol. 17 33
Google Scholar
[176] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Nat. Nanotechnol. 13 246
Google Scholar
[177] Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A 2015 ACS Nano 9 4611
Google Scholar
[178] Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D, Zhang G 2020 Nat. Electron. 3 711
Google Scholar
[179] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193
Google Scholar
[180] Yin J, Liu X, Lu W, Li J, Cao Y, Li Y, Xu Y, Li X, Zhou J, Jin C, Guo W 2015 Small 11 5375
Google Scholar
[181] Zheng P, Wei W, Liang Z, Qin B, Tian J, Wang J, Qiao R, Ren Y, Chen J, Huang C, Zhou X, Zhang G, Tang Z, Yu D, Ding F, Liu K, Xu X 2023 Nat. Commun. 14 592
Google Scholar
[182] Ma Z, Wang S, Deng Q, Hou Z, Zhou X, Li X, Cui F, Si H, Zhai T, Xu H 2020 Small 16 2000596
Google Scholar
[183] Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532
Google Scholar
[184] Choi S H, Kim H J, Song B, Kim Y I, Han G, Nguyen H T T, Ko H, Boandoh S, Choi J H, Oh C S, Cho H J, Jin J W, Won Y S, Lee B H, Yun S J, Shin B G, Jeong H Y, Kim Y M, Han Y K, Lee Y H, Kim S M, Kim K K 2021 Adv. Mater. 33 2006601
Google Scholar
[185] Li J, Wang S, Jiang Q, Qian H, Hu S, Kang H, Chen C, Zhan X, Yu A, Zhao S, Zhang Y, Chen Z, Sui Y, Qiao S, Yu G, Peng S, Jin Z, Liu X 2021 Small 17 2100743
Google Scholar
[186] Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J-A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001
Google Scholar
[187] Grønborg S S, Ulstrup S, Bianchi M, Dendzik M, Sanders C E, Lauritsen J V, Hofmann P, Miwa J A 2015 Langmuir 31 9700
Google Scholar
[188] Pan S, Yang P, Zhu L, Hong M, Xie C, Zhou F, Shi Y, Huan Y, Cui F, Zhang Y 2021 Nanotechnology 32 095601
Google Scholar
[189] Tumino F, Grazianetti C, Martella C, Ruggeri M, Russo V, Li Bassi A, Molle A, Casari C S 2021 J. Phys. Chem. C 125 9479
Google Scholar
[190] Tay R Y, Park H J, Ryu G H, Tan D, Tsang S H, Li H, Liu W, Teo E H T, Lee Z, Lifshitz Y, Ruoff R S 2016 Nanoscale 8 2434
Google Scholar
[191] Uchida Y, Iwaizako T, Mizuno S, Tsuji M, Ago H 2017 Phys. Chem. Chem. Phys. 19 8230
Google Scholar
[192] Taslim A B, Nakajima H, Lin Y C, Uchida Y, Kawahara K, Okazaki T, Suenaga K, Hibino H, Ago H 2019 Nanoscale 11 14668
Google Scholar
[193] Butashin A V, Vlasov V P, Kanevskii V M, Muslimov A E, Fedorov V A 2012 Crystallogr. Rep.+ 57 824
Google Scholar
[194] Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598
Google Scholar
[195] Li X, Shi X, Marian D, Soriano D, Cusati T, Iannaccone G, Fiori G, Guo Q, Zhao W, Wu Y 2023 Sci. Adv. 9 eade5706
Google Scholar
[196] Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J, Zhu X Y 2020 Science 367 903
Google Scholar
[197] Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P 2022 Nat. Chem. 14 25
Google Scholar
[198] Zhang X, Huangfu L, Gu Z, Xiao S, Zhou J, Nan H, Gu X, Ostrikov K 2021 Small 17 2007312
Google Scholar
计量
- 文章访问数: 6917
- PDF下载量: 169
- 被引次数: 0