-
霍尔天平材料中层间耦合作用易于调控, 基于此可以实现多组态磁存储模式, 其区别于当前基于自旋阀或者磁性隧道结的传统二组态磁存储原理. 与此同时, 还可以在存储单元中实现信息的逻辑运算从而提高器件整体的运算效率. 这一设计有利于自旋电子学器件的微型化、集成化, 有望从物理原理上解决当前基于自旋阀或者磁性隧道结的传统二组态自旋电子学材料器件的技术瓶颈, 进一步提高磁存储密度, 为推动新型自旋电子学材料的研究开辟了一条新的研究思路. 首先, 本综述将介绍基于霍尔天平材料的磁存储器件的研究背景; 其次, 重点介绍霍尔天平存储逻辑器件一体化设计的提出与发展历程; 再次, 介绍霍尔天平材料关键指标—霍尔电阻比值的界面调控及物理机理探索; 随后详细阐述霍尔天平体系中磁性斯格明子的产生与多场调控等动态行为. 最后, 简单介绍霍尔天平结构在其他相关材料中的扩展、应用, 并展望其在未来器件应用中的前景.To break through the conventional binary storage based on spin valves and magnetic tunnel junctions, multi-state storage has been successfully achieved in Hall balance. Meanwhile, logic operation can be realized in the storage cell of Hall balance to improve the operation efficiency. Therefore, the concept of Hall balance will benefit the device integration, which provides an effective insight into fabricating the development of spintronics. In this topical review article, firstly the background of memory based on Hall balance is introduced. Secondly, the concept and recent progress of Hall balance are briefly summarized. Thirdly, the manipulation of anomalous Hall resistance ratio (HRR) and its physical mechanism is systematically investigated. Furthermore, magnetic skyrmions and their dynamics in Hall balance are presented in detail. Finally, the application of Hall balance to other kinds of materials is discussed and prospects its future.
-
Keywords:
- Hall balance /
- multi-state storage /
- magnetic skyrmions /
- canted spin structure
[1] Moore G E 1965 Electronics 38 114
[2] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[3] Song Y H, Zhao X T, Liu W, Liu L, Li S K, Zhang Z D 2020 Appl. Phys. Lett. 117 232408
Google Scholar
[4] Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231
[5] Prinz G A 1998 Science 282 1660
Google Scholar
[6] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828(R
[7] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862
Google Scholar
[8] Mohri K, Kohzawa T, Yoshida H 1992 IEEE Trans. Magn. 28 3150
Google Scholar
[9] Jungwirth T, Wunderlich J, Olejnik K 2012 Nat. Mater. 11 382
Google Scholar
[10] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
Google Scholar
[11] Butler W H, Zhang X G, Schulthess T C, Maclaren J M 2001 Phys. Rev. B 63 054416
Google Scholar
[12] Mathon J, Umeerski A 2001 Phys. Rev. B 63 220403
Google Scholar
[13] Wang W G, Li M G, Hageman S, Chien C L 2012 Nat. Mater. 11 64
[14] Wang Y Y, Zhou X, Song C, Yan Y N, Zhou S M, Wang G Y, Chen C, Zeng F, Pan F 2015 Adv. Mater. 27 3196
Google Scholar
[15] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944
[16] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712
Google Scholar
[17] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719
Google Scholar
[18] Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190
Google Scholar
[19] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648
Google Scholar
[20] Lavrijsen R, Lee J H, Pacheco A F, Petit D C M C, Mansell R, Cowburn R P 2013 Nature 493 647
Google Scholar
[21] Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 Phys. Rev. B 78 180411
Google Scholar
[22] Tao B S, Yang H X, Zhao Y L, Devaux X, Lengaigne G, Hehn M, Lacour D, Andrieu S, Chshiev M, Hauet T, Montaigne F, Mangin S, Han X F, Lu Y 2015 Phys. Rev. Lett. 115 157204
Google Scholar
[23] Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154
Google Scholar
[24] Smit J 1955 Physica 21 877
Google Scholar
[25] Berger L 1970 Phys. Rev. B 2 4559
Google Scholar
[26] Tian Y, Li Y, Jin X F 2009 Phys. Rev. Lett. 103 087206
Google Scholar
[27] Hsu H S, Lin C P, Chou H, Huang J C A 2008 Appl. Phys. Lett. 93 142507
Google Scholar
[28] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246
Google Scholar
[29] Miao G X, Xiao G 2004 Appl. Phys. Lett. 85 73
Google Scholar
[30] Zhang J Y, Wu Z L, Wang S G, Zhao C J, Yang G, Zhang S L, Liu Y, Liu S, Teng J, Yu G H 2013 Appl. Phys. Lett. 102 102404
Google Scholar
[31] Chen M, Shi Z, Xu W J, Zhang X X, Du J, Zhou S M 2011 Appl. Phys. Lett. 98 082503
Google Scholar
[32] Moritz J, Rodmacq B, Auffret S, Dieny B 2008 J. Phys. D: Appl. Phys. 41 135001
Google Scholar
[33] Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410
Google Scholar
[34] Ye L, Tian Y, Jin X F, Xiao D 2012 Phys. Rev. B 85 220403
Google Scholar
[35] Zhu L J, Pan D, Zhao J H 2014 Phys. Rev. B 89 220406
Google Scholar
[36] Rosenblatt D, Karpovski M, Gerber A 2010 Appl. Phys. Lett. 96 022512
Google Scholar
[37] Vilanova Vidal E, Schneider H, Jakob G 2011 Phys. Rev. B 83 174410
Google Scholar
[38] He P, Ma L, Shi Z, Guo G Y, Zheng J G, Xin Y, Zhou S M 2012 Phys. Rev. Lett. 109 066402
Google Scholar
[39] Lu Y M, Cai J W, Pan H Y, Sun L 2012 Appl. Phys. Lett. 100 022404
Google Scholar
[40] Zhu T, Chen P, Zhang Q H, Yu R C, Liu B G 2014 Appl. Phys. Lett. 104 202404
Google Scholar
[41] Zhang J Y, Yang G, Wang S G, Zhang S L, Zhang P, Cao X Z, Jiang S L, Zhao C J, Liu Y, Wang H C, Yu G H 2013 Appl. Phys. Express 6 103007
Google Scholar
[42] Zhang S L, Liu Y, Mclntyre L J C, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087
Google Scholar
[43] Zhang S L, Baker A A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Electron. Mater. 1 1400051
Google Scholar
[44] Zhang S L, Zhang J Y, Baker A A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109
[45] Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006
[46] Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 092402
Google Scholar
[47] Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 172403
Google Scholar
[48] Zhang J Y, Yang G, Wang S G, Liu J L, Wang R M, Amsellem E, Kohn A, Yu G H 2015 Appl. Phys. Lett. 106 152401
Google Scholar
[49] Zhang J Y, Dou P W, Peng W L, Zhuang Y, Liu J L, Kohn A, Amsellem E, You C Y, Liu J Q, Zheng X Q, Yu G H, Jiang Y, Wang S G 2020 Appl. Surf. Sci. 521 146475
Google Scholar
[50] Wang S G, Han G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935
Google Scholar
[51] Röβler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797
Google Scholar
[52] Jiang W J, Chen G, Liu K, Zang J D, te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1
Google Scholar
[53] Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Rnnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015 Nat. Mater. 14 1116
Google Scholar
[54] Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144
Google Scholar
[55] Takagi R, Yu X Z, White J S, Shibata K, Kaneko Y, Tatara G, Rnnow H M, Tokura Y, Seki S 2018 Phys. Rev. Lett. 120 037203
Google Scholar
[56] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444
Google Scholar
[57] Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D de S, Locatelli A, Mentes T O, Sala A, Prejbeanu L D B, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron loan M, Gaudin G 2016 Nat. Nanotechnol. 11 449
Google Scholar
[58] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501
Google Scholar
[59] Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M, Yang H 2017 Nat. Commun. 8 14761
Google Scholar
[60] Guang Y, Bykova I, Liu Y Z, Yu G Q, Goering E, Weigand M, Grfe J, Kim S K, Zhang J W, Zhang H, Yan Z R, Wan C H, Feng J F, Wang X, Guo C Y, Wei H X, Peng Y, Tserkovnyak Y, Han X F, Schütz G 2020 Nat. Commun. 11 949
Google Scholar
[61] Garlow J A, Pollard S D, Beleggia M, Dutta T, Yang H, Zhu Y M 2019 Phys. Rev. Lett. 122 237201
Google Scholar
[62] Meyer S, Perini M, von Malottki S, Kubetzka A, Wiesendanger R, von Bergmann K, Heinze S 2019 Nat. Commun. 10 3823
Google Scholar
[63] Raju M, Yagil A, Soumyanarayanan A, Tan A K C, Almoalem A, Ma F S, Auslaender O M, Panagopoulos C 2019 Nat. Commun. 10 696
Google Scholar
[64] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901
Google Scholar
[65] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988
Google Scholar
[66] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
Google Scholar
[67] Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887
Google Scholar
[68] Du H F, Liang D, Jin C M, Kong L Y, Stolt M J, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637
Google Scholar
[69] Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovacs A, Zang J D, Tian M L, Zhang Y H, Du H F, Borkowski R E D 2017 Phys. Rev. Lett. 119 197205
Google Scholar
[70] Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898
Google Scholar
[71] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411
Google Scholar
[72] Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403
Google Scholar
[73] He M, Li G, Zhang Y, Peng L C, Cai J W, Li J Q, Wei H X, Gu L, Zhao T Y, Shen B G 2017 Appl. Phys. Lett. 111 202403
Google Scholar
[74] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283
Google Scholar
[75] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国 2018 67 137507
Google Scholar
Dong B W, Zhang J Y, Peng L C, He M, Zhang Y, Zhao Y C, Wang C, Sun Y, Cai J W, Wang W H, Wei H X, Shen B G, Jiang Y, Wang S G 2018 Acta Phys. Sin. 67 137507
Google Scholar
[76] 张志东 2015 64 067503
Zhang Z D 2015 Acta Phys. Sin. 64 067503
[77] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 67 137509
Google Scholar
Hou Z P, Ding B, Li H, Xu G Z, Wang W H, Wu G H 2018 Acta Phys. Sin. 67 137509
Google Scholar
[78] Jin C M, Du H F 2015 Chin. Phys. B 24 128501
Google Scholar
[79] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 67 137505
Google Scholar
Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505
Google Scholar
[80] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平 2018 67 137510
Google Scholar
Liang X, Zhao L, Qiu L, Li S, Ding L H, Feng Y H, Zhang X C, Zhou Y, Zhao G P 2018 Acta Phys. Sin. 67 137510
Google Scholar
[81] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L 2017 Nat. Phys. 13 162
Google Scholar
[82] Zhang X C, Zhou Y, Ezawa M 2017 Nat. Commun. 7 10293
[83] Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204
Google Scholar
[84] Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203
Google Scholar
[85] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Zhou Y 2018 Phys. Rev. B 98 134448
Google Scholar
[86] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154
Google Scholar
[87] Hirata Y, Kim D H, Kim S K, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J 2019 Nat. Nanotechnol. 14 232
Google Scholar
[88] Zhang J Y, Zhang Y, Gao Y, Zhao G P, Qiu L, Wang K Y, Dou P W, Peng W L, Zhuang Y, Wu Y F, Yu G Q, Zhu Z Z, Zhao Y C, Guo Y Q, Zhu T, Cai J W, Shen B G, Wang S G 2020 Adv. Mater. 32 1907452
Google Scholar
[89] 郭尔佳, 朱涛 2019 物理 48 708
Google Scholar
Guo E J, Zhu T 2019 Physics 48 708
Google Scholar
[90] Ankner J F, Felcher G P 1999 J. Magn. Magn. Mater. 200 741
Google Scholar
[91] Zhu T, Yang Y, Yu R C, Ambaye H, Lauter V, Xiao J Q 2012 Appl. Phys. Lett. 100 202406
Google Scholar
[92] Liu T, Lacour D, Montaigne F, Gall S Le, Hehn M, Hauet T 2015 Appl. Phys. Lett. 106 052406
Google Scholar
[93] 孙明娟, 刘要稳 2015 64 247505
Google Scholar
Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505
Google Scholar
[94] Xu H N, Xia Y D, Xu B, Yin J, Yuan G L, Liu Z G 2016 Sci. Rep. 6 27022
Google Scholar
[95] Saldanha D R, Dugato D A, Mori T J A, Daudt N F, Dorneles L S, Denardin J C 2018 J. Phys. D: Appl. Phys. 51 395001
Google Scholar
[96] Pattnaik D P, Beardsley R P, Love C, Cavill S A, Edmonds K W, Rushforth A W 2019 Sci. Rep. 9 3156
Google Scholar
[97] van Thiel T C, Groenendijk D J, Caviglia A D 2020 J. Phys.: Mater. 3 025005
Google Scholar
[98] Wysocki L, Yang L, Gunkel F, Dittmann R, van Loosdrecht P H M, Vrejoiu I L 2020 Phys. Rev. Mater. 4 054402
Google Scholar
[99] Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, Zhao J H 2020 Chin. Phys. Lett. 37 077303
Google Scholar
[100] Wang H, Dai Y Y, Liu Z R, Xie Q D, Liu C, Lin W N, Liu L, Yang P, Wang J, Venkatesan T V, Chow G M, Tian H, Zhang Z D, Chen J S 2020 Adv. Mater. 32 1904415
Google Scholar
-
图 1 (a)磁性隧道结Fe(25)/MgO(3)/Fe(10)/IrMn(10) (厚度单位均为纳米)中的R-H输出曲线[21]; (b)霍尔天平CoO(10)/[Co(0.3)/Pt(1)]3/NiO(1.1)/Pt(0.6)/[Co(0.3)/Pt(1)]3/CoO(10) (厚度单位均为纳米)中的R-H输出曲线
Fig. 1. (a) R-H loops for the magnetic tunnel junction with the structure of Fe(25)/MgO(3)/Fe(10)/IrMn(10) (in nm)[21]; (b) R-H loop for Hall balance with the structure of CoO(10)/[Co(0.3)/Pt(1)]3/NiO(1.1)/Pt(0.6)/[Co(0.3)/Pt(1)]3/CoO(10) (in nm).
图 6 (a)样品NiO(20)/[Co(0.4)/Pt(1.2)]/MgO/[Co(0.4)/Pt(1.2)]/NiO(1) (nm)的霍尔输出曲线; (b)样品NiO(50)/Pt(0.6)/[Co(0.3)/Pt(1)]/NiO/[Co(0.4)/Pt(1.2)] (单位: nm)的霍尔输出曲线[42]
Fig. 6. (a) Hall loop for the sample NiO(20)/[Co(0.4)/Pt(1.2)]/MgO/[Co(0.4)/Pt(1.2)]/NiO(1) (in nm); (b) Hall loop for the sample NiO(50)/Pt(0.6)/[Co(0.3)/Pt(1)]/NiO/[Co(0.4)/Pt(1.2)] (in nm) [42].
图 7 (a)−(c)样品Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(tNiO)/Pt(0.3)/[Co(0.4)/Pt(1)]4 (厚度单位为纳米)的霍尔曲线; (d)−(f)样品Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(1.1)/Pt(0.3)/[Co(0.4)/Pt(tPt)]4 (厚度单位均为纳米)样品的霍尔输出曲线[48]
Fig. 7. (a)−(c) Hall loops for the sample Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(tNiO)/Pt(0.3)/[Co(0.4)/Pt(1)]4 (in nm); (d)−(f) Hall loops for the sample Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(1.1)/Pt(0.3)/[Co(0.4)/Pt(tPt)]4 (in nm)[48].
图 9 (a)样品CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(1)/[Co(0.4)/Pt(0.6)]4/CoO(3)(厚度单位均为纳米)低倍透射电镜照片; (b)上述样品的选区电子衍射花样照片[48]
Fig. 9. (a) Transmission electron microscope (TEM) image and (b) electron diffraction pattern for the sample CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(1)/[Co(0.4)/Pt(0.6)]4/CoO(3) (in nm)[48].
图 13 (a), (b)Co/NiO界面和NiO/Co界面上高分辨Co 2p XPS图谱; (c)界面CoOx/Co比率随Pt厚度变化规律; (d)界面Pt 4f结合能随界面Pt厚度变化规律[49]
Fig. 13. (a), (b) High resolution XPS Co 2p spectra at Co/NiO interface and NiO/Co interface; (c) interfacial CoOx/Co content and (d) Pt 4f binding energy as a function of the Pt thickness at interfaces[49].
图 14 (a)霍尔天平的结构示意图; (b)具有铁磁耦合和反铁磁耦合霍尔天平的垂直膜面方向的磁滞回线; (c)霍尔天平的交换耦合场和(d)饱和磁化强度随NiO厚度变化规律[88]
Fig. 14. (a) Schematic of Hall balance in L-TEM measurement; (b) normalized M-H loops for the sample with ferromagnetic coupling and antiferromagnetic coupling, respectively; (c) shifted field and (d) saturation magnetization as a function of NiO thickness[88].
图 15 (a), (b)铁磁耦合和反铁磁耦合霍尔天平基态下的洛伦兹透射电镜照片; (c), (d)铁磁耦合和反铁磁耦合霍尔天平激励后的洛伦兹透射电镜照片[88]
Fig. 15. L-TEM images for Hall balance at ground state with (a) ferromagnetic coupling and (b) antiferromagnetic coupling, respectively. High density of skyrmions in a Hall balance after drawing excitation with (c) ferromagnetic coupling and (d) antiferromagnetic coupling, respectively[88].
图 17 (a)和(b)分别是低场下和高场下具有反铁磁耦合霍尔天平的极化中子反射谱图; (c)具有反铁磁耦合的霍尔天平自旋结构示意图; (d)和(e)分别是低场下和高场下具有铁磁耦合霍尔天平的极化中子反射谱图; (f)具有铁磁耦合的霍尔天平自旋结构示意图[88]
Fig. 17. PNR spectra as a function of Q measured with in-plane (a) low and (b) high magnetic fields for the Hall balance with antiferromagnetic coupling; (c) schematic of the magnetic structure of the Hall balance with antiferromagnetic coupling; PNR spectra as a function of Q measured with in-plane (d) low and (e) high magnetic fields for the Hall balance with ferromagnetic coupling; (f) schematic of the magnetic structure of the Hall balance with ferromagnetic coupling[88].
图 18 (a)具有不同层间耦合强度的霍尔天平中的基态和激励后的磁性斯格明子; (b)基态下霍尔天平中磁性斯格明子密度随EIEC和θ变化的相图; (c)外部激励撤除后霍尔天平中磁性斯格明子个数随层间耦合强度的变化规律曲线[88]
Fig. 18. (a) Simulated skyrmions in a Hall balance with various EIEC; (b) contour map of the skyrmion density as a function of EIEC and θ without external excitation; (c) the skyrmion number as a function of EIEC in Hall balance with drawing excitation[88].
图 19 (a)不同温度下SRO/STO/SRO霍尔天平的反常霍尔曲线; (b)霍尔信号符号翻转温度附近的输出曲线放大图; (c) SRO/STO/SRO霍尔天平双通道霍尔电阻贡献解析图[97]
Fig. 19. (a) Hall loops for the SRO/STO/SRO Hall balance under various temperature; (b) enlarged Hall loops in the vicinity of the sign reversal temperature; (c) Hall resistance in SRO/STO/SRO Hall balance[97].
-
[1] Moore G E 1965 Electronics 38 114
[2] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[3] Song Y H, Zhao X T, Liu W, Liu L, Li S K, Zhang Z D 2020 Appl. Phys. Lett. 117 232408
Google Scholar
[4] Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231
[5] Prinz G A 1998 Science 282 1660
Google Scholar
[6] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828(R
[7] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862
Google Scholar
[8] Mohri K, Kohzawa T, Yoshida H 1992 IEEE Trans. Magn. 28 3150
Google Scholar
[9] Jungwirth T, Wunderlich J, Olejnik K 2012 Nat. Mater. 11 382
Google Scholar
[10] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
Google Scholar
[11] Butler W H, Zhang X G, Schulthess T C, Maclaren J M 2001 Phys. Rev. B 63 054416
Google Scholar
[12] Mathon J, Umeerski A 2001 Phys. Rev. B 63 220403
Google Scholar
[13] Wang W G, Li M G, Hageman S, Chien C L 2012 Nat. Mater. 11 64
[14] Wang Y Y, Zhou X, Song C, Yan Y N, Zhou S M, Wang G Y, Chen C, Zeng F, Pan F 2015 Adv. Mater. 27 3196
Google Scholar
[15] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944
[16] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712
Google Scholar
[17] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719
Google Scholar
[18] Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190
Google Scholar
[19] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648
Google Scholar
[20] Lavrijsen R, Lee J H, Pacheco A F, Petit D C M C, Mansell R, Cowburn R P 2013 Nature 493 647
Google Scholar
[21] Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 Phys. Rev. B 78 180411
Google Scholar
[22] Tao B S, Yang H X, Zhao Y L, Devaux X, Lengaigne G, Hehn M, Lacour D, Andrieu S, Chshiev M, Hauet T, Montaigne F, Mangin S, Han X F, Lu Y 2015 Phys. Rev. Lett. 115 157204
Google Scholar
[23] Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154
Google Scholar
[24] Smit J 1955 Physica 21 877
Google Scholar
[25] Berger L 1970 Phys. Rev. B 2 4559
Google Scholar
[26] Tian Y, Li Y, Jin X F 2009 Phys. Rev. Lett. 103 087206
Google Scholar
[27] Hsu H S, Lin C P, Chou H, Huang J C A 2008 Appl. Phys. Lett. 93 142507
Google Scholar
[28] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246
Google Scholar
[29] Miao G X, Xiao G 2004 Appl. Phys. Lett. 85 73
Google Scholar
[30] Zhang J Y, Wu Z L, Wang S G, Zhao C J, Yang G, Zhang S L, Liu Y, Liu S, Teng J, Yu G H 2013 Appl. Phys. Lett. 102 102404
Google Scholar
[31] Chen M, Shi Z, Xu W J, Zhang X X, Du J, Zhou S M 2011 Appl. Phys. Lett. 98 082503
Google Scholar
[32] Moritz J, Rodmacq B, Auffret S, Dieny B 2008 J. Phys. D: Appl. Phys. 41 135001
Google Scholar
[33] Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410
Google Scholar
[34] Ye L, Tian Y, Jin X F, Xiao D 2012 Phys. Rev. B 85 220403
Google Scholar
[35] Zhu L J, Pan D, Zhao J H 2014 Phys. Rev. B 89 220406
Google Scholar
[36] Rosenblatt D, Karpovski M, Gerber A 2010 Appl. Phys. Lett. 96 022512
Google Scholar
[37] Vilanova Vidal E, Schneider H, Jakob G 2011 Phys. Rev. B 83 174410
Google Scholar
[38] He P, Ma L, Shi Z, Guo G Y, Zheng J G, Xin Y, Zhou S M 2012 Phys. Rev. Lett. 109 066402
Google Scholar
[39] Lu Y M, Cai J W, Pan H Y, Sun L 2012 Appl. Phys. Lett. 100 022404
Google Scholar
[40] Zhu T, Chen P, Zhang Q H, Yu R C, Liu B G 2014 Appl. Phys. Lett. 104 202404
Google Scholar
[41] Zhang J Y, Yang G, Wang S G, Zhang S L, Zhang P, Cao X Z, Jiang S L, Zhao C J, Liu Y, Wang H C, Yu G H 2013 Appl. Phys. Express 6 103007
Google Scholar
[42] Zhang S L, Liu Y, Mclntyre L J C, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087
Google Scholar
[43] Zhang S L, Baker A A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Electron. Mater. 1 1400051
Google Scholar
[44] Zhang S L, Zhang J Y, Baker A A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109
[45] Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006
[46] Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 092402
Google Scholar
[47] Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 172403
Google Scholar
[48] Zhang J Y, Yang G, Wang S G, Liu J L, Wang R M, Amsellem E, Kohn A, Yu G H 2015 Appl. Phys. Lett. 106 152401
Google Scholar
[49] Zhang J Y, Dou P W, Peng W L, Zhuang Y, Liu J L, Kohn A, Amsellem E, You C Y, Liu J Q, Zheng X Q, Yu G H, Jiang Y, Wang S G 2020 Appl. Surf. Sci. 521 146475
Google Scholar
[50] Wang S G, Han G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935
Google Scholar
[51] Röβler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797
Google Scholar
[52] Jiang W J, Chen G, Liu K, Zang J D, te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1
Google Scholar
[53] Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Rnnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015 Nat. Mater. 14 1116
Google Scholar
[54] Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144
Google Scholar
[55] Takagi R, Yu X Z, White J S, Shibata K, Kaneko Y, Tatara G, Rnnow H M, Tokura Y, Seki S 2018 Phys. Rev. Lett. 120 037203
Google Scholar
[56] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444
Google Scholar
[57] Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D de S, Locatelli A, Mentes T O, Sala A, Prejbeanu L D B, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron loan M, Gaudin G 2016 Nat. Nanotechnol. 11 449
Google Scholar
[58] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501
Google Scholar
[59] Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M, Yang H 2017 Nat. Commun. 8 14761
Google Scholar
[60] Guang Y, Bykova I, Liu Y Z, Yu G Q, Goering E, Weigand M, Grfe J, Kim S K, Zhang J W, Zhang H, Yan Z R, Wan C H, Feng J F, Wang X, Guo C Y, Wei H X, Peng Y, Tserkovnyak Y, Han X F, Schütz G 2020 Nat. Commun. 11 949
Google Scholar
[61] Garlow J A, Pollard S D, Beleggia M, Dutta T, Yang H, Zhu Y M 2019 Phys. Rev. Lett. 122 237201
Google Scholar
[62] Meyer S, Perini M, von Malottki S, Kubetzka A, Wiesendanger R, von Bergmann K, Heinze S 2019 Nat. Commun. 10 3823
Google Scholar
[63] Raju M, Yagil A, Soumyanarayanan A, Tan A K C, Almoalem A, Ma F S, Auslaender O M, Panagopoulos C 2019 Nat. Commun. 10 696
Google Scholar
[64] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901
Google Scholar
[65] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988
Google Scholar
[66] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
Google Scholar
[67] Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887
Google Scholar
[68] Du H F, Liang D, Jin C M, Kong L Y, Stolt M J, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637
Google Scholar
[69] Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovacs A, Zang J D, Tian M L, Zhang Y H, Du H F, Borkowski R E D 2017 Phys. Rev. Lett. 119 197205
Google Scholar
[70] Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898
Google Scholar
[71] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411
Google Scholar
[72] Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403
Google Scholar
[73] He M, Li G, Zhang Y, Peng L C, Cai J W, Li J Q, Wei H X, Gu L, Zhao T Y, Shen B G 2017 Appl. Phys. Lett. 111 202403
Google Scholar
[74] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283
Google Scholar
[75] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国 2018 67 137507
Google Scholar
Dong B W, Zhang J Y, Peng L C, He M, Zhang Y, Zhao Y C, Wang C, Sun Y, Cai J W, Wang W H, Wei H X, Shen B G, Jiang Y, Wang S G 2018 Acta Phys. Sin. 67 137507
Google Scholar
[76] 张志东 2015 64 067503
Zhang Z D 2015 Acta Phys. Sin. 64 067503
[77] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 67 137509
Google Scholar
Hou Z P, Ding B, Li H, Xu G Z, Wang W H, Wu G H 2018 Acta Phys. Sin. 67 137509
Google Scholar
[78] Jin C M, Du H F 2015 Chin. Phys. B 24 128501
Google Scholar
[79] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 67 137505
Google Scholar
Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505
Google Scholar
[80] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平 2018 67 137510
Google Scholar
Liang X, Zhao L, Qiu L, Li S, Ding L H, Feng Y H, Zhang X C, Zhou Y, Zhao G P 2018 Acta Phys. Sin. 67 137510
Google Scholar
[81] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L 2017 Nat. Phys. 13 162
Google Scholar
[82] Zhang X C, Zhou Y, Ezawa M 2017 Nat. Commun. 7 10293
[83] Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204
Google Scholar
[84] Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203
Google Scholar
[85] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Zhou Y 2018 Phys. Rev. B 98 134448
Google Scholar
[86] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154
Google Scholar
[87] Hirata Y, Kim D H, Kim S K, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J 2019 Nat. Nanotechnol. 14 232
Google Scholar
[88] Zhang J Y, Zhang Y, Gao Y, Zhao G P, Qiu L, Wang K Y, Dou P W, Peng W L, Zhuang Y, Wu Y F, Yu G Q, Zhu Z Z, Zhao Y C, Guo Y Q, Zhu T, Cai J W, Shen B G, Wang S G 2020 Adv. Mater. 32 1907452
Google Scholar
[89] 郭尔佳, 朱涛 2019 物理 48 708
Google Scholar
Guo E J, Zhu T 2019 Physics 48 708
Google Scholar
[90] Ankner J F, Felcher G P 1999 J. Magn. Magn. Mater. 200 741
Google Scholar
[91] Zhu T, Yang Y, Yu R C, Ambaye H, Lauter V, Xiao J Q 2012 Appl. Phys. Lett. 100 202406
Google Scholar
[92] Liu T, Lacour D, Montaigne F, Gall S Le, Hehn M, Hauet T 2015 Appl. Phys. Lett. 106 052406
Google Scholar
[93] 孙明娟, 刘要稳 2015 64 247505
Google Scholar
Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505
Google Scholar
[94] Xu H N, Xia Y D, Xu B, Yin J, Yuan G L, Liu Z G 2016 Sci. Rep. 6 27022
Google Scholar
[95] Saldanha D R, Dugato D A, Mori T J A, Daudt N F, Dorneles L S, Denardin J C 2018 J. Phys. D: Appl. Phys. 51 395001
Google Scholar
[96] Pattnaik D P, Beardsley R P, Love C, Cavill S A, Edmonds K W, Rushforth A W 2019 Sci. Rep. 9 3156
Google Scholar
[97] van Thiel T C, Groenendijk D J, Caviglia A D 2020 J. Phys.: Mater. 3 025005
Google Scholar
[98] Wysocki L, Yang L, Gunkel F, Dittmann R, van Loosdrecht P H M, Vrejoiu I L 2020 Phys. Rev. Mater. 4 054402
Google Scholar
[99] Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, Zhao J H 2020 Chin. Phys. Lett. 37 077303
Google Scholar
[100] Wang H, Dai Y Y, Liu Z R, Xie Q D, Liu C, Lin W N, Liu L, Yang P, Wang J, Venkatesan T V, Chow G M, Tian H, Zhang Z D, Chen J S 2020 Adv. Mater. 32 1904415
Google Scholar
计量
- 文章访问数: 10258
- PDF下载量: 278
- 被引次数: 0