搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

霍尔天平材料的多场调控

张静言 窦鹏伟 赵云驰 张石磊 刘佳强 祁杰 吕浩昌 刘若洋 于广华 姜勇 沈保根 王守国

引用本文:
Citation:

霍尔天平材料的多场调控

张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国

Multi-field manipulation in Hall balance

Zhang Jing-Yan, Dou Peng-Wei, Zhao Yun-Chi, Zhang Shi-Lei, Liu Jia-Qiang, Qi Jie, Lü Hao-Chang, Liu Ruo-Yang, Yu Guang-Hua, Jiang Yong, Shen Bao-Gen, Wang Shou-Guo
PDF
HTML
导出引用
  • 霍尔天平材料中层间耦合作用易于调控, 基于此可以实现多组态磁存储模式, 其区别于当前基于自旋阀或者磁性隧道结的传统二组态磁存储原理. 与此同时, 还可以在存储单元中实现信息的逻辑运算从而提高器件整体的运算效率. 这一设计有利于自旋电子学器件的微型化、集成化, 有望从物理原理上解决当前基于自旋阀或者磁性隧道结的传统二组态自旋电子学材料器件的技术瓶颈, 进一步提高磁存储密度, 为推动新型自旋电子学材料的研究开辟了一条新的研究思路. 首先, 本综述将介绍基于霍尔天平材料的磁存储器件的研究背景; 其次, 重点介绍霍尔天平存储逻辑器件一体化设计的提出与发展历程; 再次, 介绍霍尔天平材料关键指标—霍尔电阻比值的界面调控及物理机理探索; 随后详细阐述霍尔天平体系中磁性斯格明子的产生与多场调控等动态行为. 最后, 简单介绍霍尔天平结构在其他相关材料中的扩展、应用, 并展望其在未来器件应用中的前景.
    To break through the conventional binary storage based on spin valves and magnetic tunnel junctions, multi-state storage has been successfully achieved in Hall balance. Meanwhile, logic operation can be realized in the storage cell of Hall balance to improve the operation efficiency. Therefore, the concept of Hall balance will benefit the device integration, which provides an effective insight into fabricating the development of spintronics. In this topical review article, firstly the background of memory based on Hall balance is introduced. Secondly, the concept and recent progress of Hall balance are briefly summarized. Thirdly, the manipulation of anomalous Hall resistance ratio (HRR) and its physical mechanism is systematically investigated. Furthermore, magnetic skyrmions and their dynamics in Hall balance are presented in detail. Finally, the application of Hall balance to other kinds of materials is discussed and prospects its future.
      通信作者: 王守国, sgwang@ustb.edu.cn
      作者简介:
      王守国, 北京科技大学教授、博导、国家杰出青年基金获得者、国家重点研发计划首席科学家.  1996年本科毕业于安徽大学, 获理学学士学位; 2001年研究生毕业于中国科学院固体物理研究所, 获凝聚态物理博士学位; 2001年至2007年, 先后在新加坡国立大学、德国马普微结构物理研究所和英国牛津大学从事研究工作; 2007年底回国, 加入中国科学院物理研究所磁学国家重点实验室; 2015年12月调入北京科技大学材料科学与工程学院.  主持的项目主要包括: 国家重点研发计划、国家杰出青年基金、基金委重点项目、国家重大科学仪器设备开发专项子课题、中科院仪器研制项目、基金委面上项目、科技部中国—以色列国际合作项目等. 共发表SCI学术论文150余篇, 其中包括Adv. Mater., Nature Commun., Phys. Rev. Lett., J. Am. Chem. Soc., Phys. Rev. B, Appl. Phys. Lett., Nanoscale, ACS Appl. Mater. & Interfaces等杂志.  目前担任中国电子学会应用磁学分会副主任委员兼秘书长、中国材料研究学会纳米材料与器件分会副理事长、中国物理学会第十二届科普工作委员会副主任、中国金属学会功能材料分会副秘书长、中国金属学会材料科学分会常务理事; 中国材料研究学会青年工作委员会常务理事等. 担任Rare Metals (稀有金属英文版)和International Journal of Minerals, Metallurgy and Materials等杂志编委
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2005800)、国家自然科学基金(批准号: 11874082, 51625101, 51961145305, 51971026)和北京市自然科学基金重点项目(批准号: Z190007)资助的课题
      Corresponding author: Wang Shou-Guo, sgwang@ustb.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2005800), the National Natural Science Foundation of China (Grant Nos. 11874082, 51625101, 51961145305, 51971026), and the Key Program of the Natural Science Foundation of Beijing, China (Grant No. Z190007)
    [1]

    Moore G E 1965 Electronics 38 114

    [2]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [3]

    Song Y H, Zhao X T, Liu W, Liu L, Li S K, Zhang Z D 2020 Appl. Phys. Lett. 117 232408Google Scholar

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231

    [5]

    Prinz G A 1998 Science 282 1660Google Scholar

    [6]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828(R

    [7]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [8]

    Mohri K, Kohzawa T, Yoshida H 1992 IEEE Trans. Magn. 28 3150Google Scholar

    [9]

    Jungwirth T, Wunderlich J, Olejnik K 2012 Nat. Mater. 11 382Google Scholar

    [10]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [11]

    Butler W H, Zhang X G, Schulthess T C, Maclaren J M 2001 Phys. Rev. B 63 054416Google Scholar

    [12]

    Mathon J, Umeerski A 2001 Phys. Rev. B 63 220403Google Scholar

    [13]

    Wang W G, Li M G, Hageman S, Chien C L 2012 Nat. Mater. 11 64

    [14]

    Wang Y Y, Zhou X, Song C, Yan Y N, Zhou S M, Wang G Y, Chen C, Zeng F, Pan F 2015 Adv. Mater. 27 3196Google Scholar

    [15]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [16]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [17]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [18]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [19]

    Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar

    [20]

    Lavrijsen R, Lee J H, Pacheco A F, Petit D C M C, Mansell R, Cowburn R P 2013 Nature 493 647Google Scholar

    [21]

    Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 Phys. Rev. B 78 180411Google Scholar

    [22]

    Tao B S, Yang H X, Zhao Y L, Devaux X, Lengaigne G, Hehn M, Lacour D, Andrieu S, Chshiev M, Hauet T, Montaigne F, Mangin S, Han X F, Lu Y 2015 Phys. Rev. Lett. 115 157204Google Scholar

    [23]

    Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154Google Scholar

    [24]

    Smit J 1955 Physica 21 877Google Scholar

    [25]

    Berger L 1970 Phys. Rev. B 2 4559Google Scholar

    [26]

    Tian Y, Li Y, Jin X F 2009 Phys. Rev. Lett. 103 087206Google Scholar

    [27]

    Hsu H S, Lin C P, Chou H, Huang J C A 2008 Appl. Phys. Lett. 93 142507Google Scholar

    [28]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246Google Scholar

    [29]

    Miao G X, Xiao G 2004 Appl. Phys. Lett. 85 73Google Scholar

    [30]

    Zhang J Y, Wu Z L, Wang S G, Zhao C J, Yang G, Zhang S L, Liu Y, Liu S, Teng J, Yu G H 2013 Appl. Phys. Lett. 102 102404Google Scholar

    [31]

    Chen M, Shi Z, Xu W J, Zhang X X, Du J, Zhou S M 2011 Appl. Phys. Lett. 98 082503Google Scholar

    [32]

    Moritz J, Rodmacq B, Auffret S, Dieny B 2008 J. Phys. D: Appl. Phys. 41 135001Google Scholar

    [33]

    Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410Google Scholar

    [34]

    Ye L, Tian Y, Jin X F, Xiao D 2012 Phys. Rev. B 85 220403Google Scholar

    [35]

    Zhu L J, Pan D, Zhao J H 2014 Phys. Rev. B 89 220406Google Scholar

    [36]

    Rosenblatt D, Karpovski M, Gerber A 2010 Appl. Phys. Lett. 96 022512Google Scholar

    [37]

    Vilanova Vidal E, Schneider H, Jakob G 2011 Phys. Rev. B 83 174410Google Scholar

    [38]

    He P, Ma L, Shi Z, Guo G Y, Zheng J G, Xin Y, Zhou S M 2012 Phys. Rev. Lett. 109 066402Google Scholar

    [39]

    Lu Y M, Cai J W, Pan H Y, Sun L 2012 Appl. Phys. Lett. 100 022404Google Scholar

    [40]

    Zhu T, Chen P, Zhang Q H, Yu R C, Liu B G 2014 Appl. Phys. Lett. 104 202404Google Scholar

    [41]

    Zhang J Y, Yang G, Wang S G, Zhang S L, Zhang P, Cao X Z, Jiang S L, Zhao C J, Liu Y, Wang H C, Yu G H 2013 Appl. Phys. Express 6 103007Google Scholar

    [42]

    Zhang S L, Liu Y, Mclntyre L J C, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087Google Scholar

    [43]

    Zhang S L, Baker A A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Electron. Mater. 1 1400051Google Scholar

    [44]

    Zhang S L, Zhang J Y, Baker A A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109

    [45]

    Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006

    [46]

    Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 092402Google Scholar

    [47]

    Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 172403Google Scholar

    [48]

    Zhang J Y, Yang G, Wang S G, Liu J L, Wang R M, Amsellem E, Kohn A, Yu G H 2015 Appl. Phys. Lett. 106 152401Google Scholar

    [49]

    Zhang J Y, Dou P W, Peng W L, Zhuang Y, Liu J L, Kohn A, Amsellem E, You C Y, Liu J Q, Zheng X Q, Yu G H, Jiang Y, Wang S G 2020 Appl. Surf. Sci. 521 146475Google Scholar

    [50]

    Wang S G, Han G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935Google Scholar

    [51]

    Röβler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [52]

    Jiang W J, Chen G, Liu K, Zang J D, te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar

    [53]

    Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Rnnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015 Nat. Mater. 14 1116Google Scholar

    [54]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144Google Scholar

    [55]

    Takagi R, Yu X Z, White J S, Shibata K, Kaneko Y, Tatara G, Rnnow H M, Tokura Y, Seki S 2018 Phys. Rev. Lett. 120 037203Google Scholar

    [56]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar

    [57]

    Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D de S, Locatelli A, Mentes T O, Sala A, Prejbeanu L D B, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron loan M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [58]

    Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar

    [59]

    Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M, Yang H 2017 Nat. Commun. 8 14761Google Scholar

    [60]

    Guang Y, Bykova I, Liu Y Z, Yu G Q, Goering E, Weigand M, Grfe J, Kim S K, Zhang J W, Zhang H, Yan Z R, Wan C H, Feng J F, Wang X, Guo C Y, Wei H X, Peng Y, Tserkovnyak Y, Han X F, Schütz G 2020 Nat. Commun. 11 949Google Scholar

    [61]

    Garlow J A, Pollard S D, Beleggia M, Dutta T, Yang H, Zhu Y M 2019 Phys. Rev. Lett. 122 237201Google Scholar

    [62]

    Meyer S, Perini M, von Malottki S, Kubetzka A, Wiesendanger R, von Bergmann K, Heinze S 2019 Nat. Commun. 10 3823Google Scholar

    [63]

    Raju M, Yagil A, Soumyanarayanan A, Tan A K C, Almoalem A, Ma F S, Auslaender O M, Panagopoulos C 2019 Nat. Commun. 10 696Google Scholar

    [64]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [65]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [66]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198Google Scholar

    [67]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887Google Scholar

    [68]

    Du H F, Liang D, Jin C M, Kong L Y, Stolt M J, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637Google Scholar

    [69]

    Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovacs A, Zang J D, Tian M L, Zhang Y H, Du H F, Borkowski R E D 2017 Phys. Rev. Lett. 119 197205Google Scholar

    [70]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [71]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411Google Scholar

    [72]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403Google Scholar

    [73]

    He M, Li G, Zhang Y, Peng L C, Cai J W, Li J Q, Wei H X, Gu L, Zhao T Y, Shen B G 2017 Appl. Phys. Lett. 111 202403Google Scholar

    [74]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [75]

    董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国 2018 67 137507Google Scholar

    Dong B W, Zhang J Y, Peng L C, He M, Zhang Y, Zhao Y C, Wang C, Sun Y, Cai J W, Wang W H, Wei H X, Shen B G, Jiang Y, Wang S G 2018 Acta Phys. Sin. 67 137507Google Scholar

    [76]

    张志东 2015 64 067503

    Zhang Z D 2015 Acta Phys. Sin. 64 067503

    [77]

    侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 67 137509Google Scholar

    Hou Z P, Ding B, Li H, Xu G Z, Wang W H, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar

    [78]

    Jin C M, Du H F 2015 Chin. Phys. B 24 128501Google Scholar

    [79]

    夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 67 137505Google Scholar

    Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar

    [80]

    梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平 2018 67 137510Google Scholar

    Liang X, Zhao L, Qiu L, Li S, Ding L H, Feng Y H, Zhang X C, Zhou Y, Zhao G P 2018 Acta Phys. Sin. 67 137510Google Scholar

    [81]

    Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L 2017 Nat. Phys. 13 162Google Scholar

    [82]

    Zhang X C, Zhou Y, Ezawa M 2017 Nat. Commun. 7 10293

    [83]

    Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204Google Scholar

    [84]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203Google Scholar

    [85]

    Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Zhou Y 2018 Phys. Rev. B 98 134448Google Scholar

    [86]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [87]

    Hirata Y, Kim D H, Kim S K, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J 2019 Nat. Nanotechnol. 14 232Google Scholar

    [88]

    Zhang J Y, Zhang Y, Gao Y, Zhao G P, Qiu L, Wang K Y, Dou P W, Peng W L, Zhuang Y, Wu Y F, Yu G Q, Zhu Z Z, Zhao Y C, Guo Y Q, Zhu T, Cai J W, Shen B G, Wang S G 2020 Adv. Mater. 32 1907452Google Scholar

    [89]

    郭尔佳, 朱涛 2019 物理 48 708Google Scholar

    Guo E J, Zhu T 2019 Physics 48 708Google Scholar

    [90]

    Ankner J F, Felcher G P 1999 J. Magn. Magn. Mater. 200 741Google Scholar

    [91]

    Zhu T, Yang Y, Yu R C, Ambaye H, Lauter V, Xiao J Q 2012 Appl. Phys. Lett. 100 202406Google Scholar

    [92]

    Liu T, Lacour D, Montaigne F, Gall S Le, Hehn M, Hauet T 2015 Appl. Phys. Lett. 106 052406Google Scholar

    [93]

    孙明娟, 刘要稳 2015 64 247505Google Scholar

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505Google Scholar

    [94]

    Xu H N, Xia Y D, Xu B, Yin J, Yuan G L, Liu Z G 2016 Sci. Rep. 6 27022Google Scholar

    [95]

    Saldanha D R, Dugato D A, Mori T J A, Daudt N F, Dorneles L S, Denardin J C 2018 J. Phys. D: Appl. Phys. 51 395001Google Scholar

    [96]

    Pattnaik D P, Beardsley R P, Love C, Cavill S A, Edmonds K W, Rushforth A W 2019 Sci. Rep. 9 3156Google Scholar

    [97]

    van Thiel T C, Groenendijk D J, Caviglia A D 2020 J. Phys.: Mater. 3 025005Google Scholar

    [98]

    Wysocki L, Yang L, Gunkel F, Dittmann R, van Loosdrecht P H M, Vrejoiu I L 2020 Phys. Rev. Mater. 4 054402Google Scholar

    [99]

    Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, Zhao J H 2020 Chin. Phys. Lett. 37 077303Google Scholar

    [100]

    Wang H, Dai Y Y, Liu Z R, Xie Q D, Liu C, Lin W N, Liu L, Yang P, Wang J, Venkatesan T V, Chow G M, Tian H, Zhang Z D, Chen J S 2020 Adv. Mater. 32 1904415Google Scholar

  • 图 1  (a)磁性隧道结Fe(25)/MgO(3)/Fe(10)/IrMn(10) (厚度单位均为纳米)中的R-H输出曲线[21]; (b)霍尔天平CoO(10)/[Co(0.3)/Pt(1)]3/NiO(1.1)/Pt(0.6)/[Co(0.3)/Pt(1)]3/CoO(10) (厚度单位均为纳米)中的R-H输出曲线

    Fig. 1.  (a) R-H loops for the magnetic tunnel junction with the structure of Fe(25)/MgO(3)/Fe(10)/IrMn(10) (in nm)[21]; (b) R-H loop for Hall balance with the structure of CoO(10)/[Co(0.3)/Pt(1)]3/NiO(1.1)/Pt(0.6)/[Co(0.3)/Pt(1)]3/CoO(10) (in nm).

    图 2  (a)正常霍尔效应和(b)反常霍尔效应原理图

    Fig. 2.  Schematic of (a) ordinary Hall effect and (b) anomalous Hall effect.

    图 3  (a)基于NiO的霍尔天平R-H曲线; (b)基于霍尔天平的3D存储阵列示意图[42]

    Fig. 3.  (a) R-H loop for Hall balance based on NiO spacer; (b) schematic of 3D storage based on Hall balance[42].

    图 4  基于霍尔天平存储单元的基本布尔逻辑运算输出曲线及真值表[42]

    Fig. 4.  Boolean logic operation in storage cell based on Hall balance and truth table [42].

    图 5  (a)自旋算盘设计示意图; (b)基于NiO隔离层的自旋算盘霍尔输出曲线[44]

    Fig. 5.  (a) Schematic of magnetic abacus memory; (b) Hall loop for the magnetic abacus based on NiO spacer[44].

    图 6  (a)样品NiO(20)/[Co(0.4)/Pt(1.2)]/MgO/[Co(0.4)/Pt(1.2)]/NiO(1) (nm)的霍尔输出曲线; (b)样品NiO(50)/Pt(0.6)/[Co(0.3)/Pt(1)]/NiO/[Co(0.4)/Pt(1.2)] (单位: nm)的霍尔输出曲线[42]

    Fig. 6.  (a) Hall loop for the sample NiO(20)/[Co(0.4)/Pt(1.2)]/MgO/[Co(0.4)/Pt(1.2)]/NiO(1) (in nm); (b) Hall loop for the sample NiO(50)/Pt(0.6)/[Co(0.3)/Pt(1)]/NiO/[Co(0.4)/Pt(1.2)] (in nm) [42].

    图 7  (a)−(c)样品Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(tNiO)/Pt(0.3)/[Co(0.4)/Pt(1)]4 (厚度单位为纳米)的霍尔曲线; (d)−(f)样品Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(1.1)/Pt(0.3)/[Co(0.4)/Pt(tPt)]4 (厚度单位均为纳米)样品的霍尔输出曲线[48]

    Fig. 7.  (a)−(c) Hall loops for the sample Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(tNiO)/Pt(0.3)/[Co(0.4)/Pt(1)]4 (in nm); (d)−(f) Hall loops for the sample Pt(0.6)/[Co(0.4)/Pt(1)]3/Co(0.4)/Pt(0.3)/NiO(1.1)/Pt(0.3)/[Co(0.4)/Pt(tPt)]4 (in nm)[48].

    图 8  (a)−(d)样品CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(tNiO)/[Co(0.4)/Pt(0.6)]4/CoO(3)(厚度单位为纳米)的霍尔回线[48]

    Fig. 8.  (a)−(d) Hall loops for the sample CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(tNiO)/[Co(0.4)/Pt(0.6)]4/CoO(3) (in nm)[48].

    图 9  (a)样品CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(1)/[Co(0.4)/Pt(0.6)]4/CoO(3)(厚度单位均为纳米)低倍透射电镜照片; (b)上述样品的选区电子衍射花样照片[48]

    Fig. 9.  (a) Transmission electron microscope (TEM) image and (b) electron diffraction pattern for the sample CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(1)/[Co(0.4)/Pt(0.6)]4/CoO(3) (in nm)[48].

    图 10  样品CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(1)/[Co(0.4)/Pt(0.6)]4/CoO(3)(厚度单位均为纳米)高分辨透射电镜照片[48]

    Fig. 10.  High resolution TEM image for the sample CoO(3)/[Pt(0.6)/Co(0.4)]4/Pt(0.3)/NiO(1)/[Co(0.4)/Pt(0.6)]4/CoO(3) (in nm)[48]

    图 11  (a)−(d)样品CoO/[Co/Pt]3/Co/Pt(tB)/NiO(1.1)/[Co/Pt]4/CoO(厚度单位为纳米)的霍尔回线[49]

    Fig. 11.  (a)−(d) Hall loops for sample CoO/[Co/Pt]3/Co/Pt(tB)/NiO(1.1)/[Co/Pt]4/CoO (in nm)[49]

    图 12  (a)−(d)样品CoO/[Co/Pt]4/NiO(1.1)/Pt(tT)/[Co/Pt]4/CoO(厚度单位为纳米)的霍尔回线[49]

    Fig. 12.  (a)−(d) Hall loops for the sample CoO/[Co/Pt]4/NiO(1.1)/Pt(tT)/[Co/Pt]4/CoO (in nm)[49].

    图 13  (a), (b)Co/NiO界面和NiO/Co界面上高分辨Co 2p XPS图谱; (c)界面CoOx/Co比率随Pt厚度变化规律; (d)界面Pt 4f结合能随界面Pt厚度变化规律[49]

    Fig. 13.  (a), (b) High resolution XPS Co 2p spectra at Co/NiO interface and NiO/Co interface; (c) interfacial CoOx/Co content and (d) Pt 4f binding energy as a function of the Pt thickness at interfaces[49].

    图 14  (a)霍尔天平的结构示意图; (b)具有铁磁耦合和反铁磁耦合霍尔天平的垂直膜面方向的磁滞回线; (c)霍尔天平的交换耦合场和(d)饱和磁化强度随NiO厚度变化规律[88]

    Fig. 14.  (a) Schematic of Hall balance in L-TEM measurement; (b) normalized M-H loops for the sample with ferromagnetic coupling and antiferromagnetic coupling, respectively; (c) shifted field and (d) saturation magnetization as a function of NiO thickness[88].

    图 15  (a), (b)铁磁耦合和反铁磁耦合霍尔天平基态下的洛伦兹透射电镜照片; (c), (d)铁磁耦合和反铁磁耦合霍尔天平激励后的洛伦兹透射电镜照片[88]

    Fig. 15.  L-TEM images for Hall balance at ground state with (a) ferromagnetic coupling and (b) antiferromagnetic coupling, respectively. High density of skyrmions in a Hall balance after drawing excitation with (c) ferromagnetic coupling and (d) antiferromagnetic coupling, respectively[88].

    图 16  (a), (b)和(c)分别是不同角度下的霍尔天平中的磁性斯格明子[88]

    Fig. 16.  (a), (b), (c) Magnetic skyrmions in a Hall balance with various tilting angle[88].

    图 17  (a)和(b)分别是低场下和高场下具有反铁磁耦合霍尔天平的极化中子反射谱图; (c)具有反铁磁耦合的霍尔天平自旋结构示意图; (d)和(e)分别是低场下和高场下具有铁磁耦合霍尔天平的极化中子反射谱图; (f)具有铁磁耦合的霍尔天平自旋结构示意图[88]

    Fig. 17.  PNR spectra as a function of Q measured with in-plane (a) low and (b) high magnetic fields for the Hall balance with antiferromagnetic coupling; (c) schematic of the magnetic structure of the Hall balance with antiferromagnetic coupling; PNR spectra as a function of Q measured with in-plane (d) low and (e) high magnetic fields for the Hall balance with ferromagnetic coupling; (f) schematic of the magnetic structure of the Hall balance with ferromagnetic coupling[88].

    图 18  (a)具有不同层间耦合强度的霍尔天平中的基态和激励后的磁性斯格明子; (b)基态下霍尔天平中磁性斯格明子密度随EIECθ变化的相图; (c)外部激励撤除后霍尔天平中磁性斯格明子个数随层间耦合强度的变化规律曲线[88]

    Fig. 18.  (a) Simulated skyrmions in a Hall balance with various EIEC; (b) contour map of the skyrmion density as a function of EIEC and θ without external excitation; (c) the skyrmion number as a function of EIEC in Hall balance with drawing excitation[88].

    图 19  (a)不同温度下SRO/STO/SRO霍尔天平的反常霍尔曲线; (b)霍尔信号符号翻转温度附近的输出曲线放大图; (c) SRO/STO/SRO霍尔天平双通道霍尔电阻贡献解析图[97]

    Fig. 19.  (a) Hall loops for the SRO/STO/SRO Hall balance under various temperature; (b) enlarged Hall loops in the vicinity of the sign reversal temperature; (c) Hall resistance in SRO/STO/SRO Hall balance[97].

    Baidu
  • [1]

    Moore G E 1965 Electronics 38 114

    [2]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [3]

    Song Y H, Zhao X T, Liu W, Liu L, Li S K, Zhang Z D 2020 Appl. Phys. Lett. 117 232408Google Scholar

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231

    [5]

    Prinz G A 1998 Science 282 1660Google Scholar

    [6]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828(R

    [7]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [8]

    Mohri K, Kohzawa T, Yoshida H 1992 IEEE Trans. Magn. 28 3150Google Scholar

    [9]

    Jungwirth T, Wunderlich J, Olejnik K 2012 Nat. Mater. 11 382Google Scholar

    [10]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [11]

    Butler W H, Zhang X G, Schulthess T C, Maclaren J M 2001 Phys. Rev. B 63 054416Google Scholar

    [12]

    Mathon J, Umeerski A 2001 Phys. Rev. B 63 220403Google Scholar

    [13]

    Wang W G, Li M G, Hageman S, Chien C L 2012 Nat. Mater. 11 64

    [14]

    Wang Y Y, Zhou X, Song C, Yan Y N, Zhou S M, Wang G Y, Chen C, Zeng F, Pan F 2015 Adv. Mater. 27 3196Google Scholar

    [15]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [16]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [17]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [18]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [19]

    Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar

    [20]

    Lavrijsen R, Lee J H, Pacheco A F, Petit D C M C, Mansell R, Cowburn R P 2013 Nature 493 647Google Scholar

    [21]

    Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 Phys. Rev. B 78 180411Google Scholar

    [22]

    Tao B S, Yang H X, Zhao Y L, Devaux X, Lengaigne G, Hehn M, Lacour D, Andrieu S, Chshiev M, Hauet T, Montaigne F, Mangin S, Han X F, Lu Y 2015 Phys. Rev. Lett. 115 157204Google Scholar

    [23]

    Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154Google Scholar

    [24]

    Smit J 1955 Physica 21 877Google Scholar

    [25]

    Berger L 1970 Phys. Rev. B 2 4559Google Scholar

    [26]

    Tian Y, Li Y, Jin X F 2009 Phys. Rev. Lett. 103 087206Google Scholar

    [27]

    Hsu H S, Lin C P, Chou H, Huang J C A 2008 Appl. Phys. Lett. 93 142507Google Scholar

    [28]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246Google Scholar

    [29]

    Miao G X, Xiao G 2004 Appl. Phys. Lett. 85 73Google Scholar

    [30]

    Zhang J Y, Wu Z L, Wang S G, Zhao C J, Yang G, Zhang S L, Liu Y, Liu S, Teng J, Yu G H 2013 Appl. Phys. Lett. 102 102404Google Scholar

    [31]

    Chen M, Shi Z, Xu W J, Zhang X X, Du J, Zhou S M 2011 Appl. Phys. Lett. 98 082503Google Scholar

    [32]

    Moritz J, Rodmacq B, Auffret S, Dieny B 2008 J. Phys. D: Appl. Phys. 41 135001Google Scholar

    [33]

    Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410Google Scholar

    [34]

    Ye L, Tian Y, Jin X F, Xiao D 2012 Phys. Rev. B 85 220403Google Scholar

    [35]

    Zhu L J, Pan D, Zhao J H 2014 Phys. Rev. B 89 220406Google Scholar

    [36]

    Rosenblatt D, Karpovski M, Gerber A 2010 Appl. Phys. Lett. 96 022512Google Scholar

    [37]

    Vilanova Vidal E, Schneider H, Jakob G 2011 Phys. Rev. B 83 174410Google Scholar

    [38]

    He P, Ma L, Shi Z, Guo G Y, Zheng J G, Xin Y, Zhou S M 2012 Phys. Rev. Lett. 109 066402Google Scholar

    [39]

    Lu Y M, Cai J W, Pan H Y, Sun L 2012 Appl. Phys. Lett. 100 022404Google Scholar

    [40]

    Zhu T, Chen P, Zhang Q H, Yu R C, Liu B G 2014 Appl. Phys. Lett. 104 202404Google Scholar

    [41]

    Zhang J Y, Yang G, Wang S G, Zhang S L, Zhang P, Cao X Z, Jiang S L, Zhao C J, Liu Y, Wang H C, Yu G H 2013 Appl. Phys. Express 6 103007Google Scholar

    [42]

    Zhang S L, Liu Y, Mclntyre L J C, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087Google Scholar

    [43]

    Zhang S L, Baker A A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Electron. Mater. 1 1400051Google Scholar

    [44]

    Zhang S L, Zhang J Y, Baker A A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109

    [45]

    Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006

    [46]

    Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 092402Google Scholar

    [47]

    Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L, Yu G H 2019 Appl. Phys. Lett. 115 172403Google Scholar

    [48]

    Zhang J Y, Yang G, Wang S G, Liu J L, Wang R M, Amsellem E, Kohn A, Yu G H 2015 Appl. Phys. Lett. 106 152401Google Scholar

    [49]

    Zhang J Y, Dou P W, Peng W L, Zhuang Y, Liu J L, Kohn A, Amsellem E, You C Y, Liu J Q, Zheng X Q, Yu G H, Jiang Y, Wang S G 2020 Appl. Surf. Sci. 521 146475Google Scholar

    [50]

    Wang S G, Han G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935Google Scholar

    [51]

    Röβler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [52]

    Jiang W J, Chen G, Liu K, Zang J D, te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar

    [53]

    Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Rnnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015 Nat. Mater. 14 1116Google Scholar

    [54]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144Google Scholar

    [55]

    Takagi R, Yu X Z, White J S, Shibata K, Kaneko Y, Tatara G, Rnnow H M, Tokura Y, Seki S 2018 Phys. Rev. Lett. 120 037203Google Scholar

    [56]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar

    [57]

    Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D de S, Locatelli A, Mentes T O, Sala A, Prejbeanu L D B, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron loan M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [58]

    Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar

    [59]

    Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M, Yang H 2017 Nat. Commun. 8 14761Google Scholar

    [60]

    Guang Y, Bykova I, Liu Y Z, Yu G Q, Goering E, Weigand M, Grfe J, Kim S K, Zhang J W, Zhang H, Yan Z R, Wan C H, Feng J F, Wang X, Guo C Y, Wei H X, Peng Y, Tserkovnyak Y, Han X F, Schütz G 2020 Nat. Commun. 11 949Google Scholar

    [61]

    Garlow J A, Pollard S D, Beleggia M, Dutta T, Yang H, Zhu Y M 2019 Phys. Rev. Lett. 122 237201Google Scholar

    [62]

    Meyer S, Perini M, von Malottki S, Kubetzka A, Wiesendanger R, von Bergmann K, Heinze S 2019 Nat. Commun. 10 3823Google Scholar

    [63]

    Raju M, Yagil A, Soumyanarayanan A, Tan A K C, Almoalem A, Ma F S, Auslaender O M, Panagopoulos C 2019 Nat. Commun. 10 696Google Scholar

    [64]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [65]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [66]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198Google Scholar

    [67]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887Google Scholar

    [68]

    Du H F, Liang D, Jin C M, Kong L Y, Stolt M J, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637Google Scholar

    [69]

    Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovacs A, Zang J D, Tian M L, Zhang Y H, Du H F, Borkowski R E D 2017 Phys. Rev. Lett. 119 197205Google Scholar

    [70]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [71]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411Google Scholar

    [72]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403Google Scholar

    [73]

    He M, Li G, Zhang Y, Peng L C, Cai J W, Li J Q, Wei H X, Gu L, Zhao T Y, Shen B G 2017 Appl. Phys. Lett. 111 202403Google Scholar

    [74]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [75]

    董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国 2018 67 137507Google Scholar

    Dong B W, Zhang J Y, Peng L C, He M, Zhang Y, Zhao Y C, Wang C, Sun Y, Cai J W, Wang W H, Wei H X, Shen B G, Jiang Y, Wang S G 2018 Acta Phys. Sin. 67 137507Google Scholar

    [76]

    张志东 2015 64 067503

    Zhang Z D 2015 Acta Phys. Sin. 64 067503

    [77]

    侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 67 137509Google Scholar

    Hou Z P, Ding B, Li H, Xu G Z, Wang W H, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar

    [78]

    Jin C M, Du H F 2015 Chin. Phys. B 24 128501Google Scholar

    [79]

    夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 67 137505Google Scholar

    Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar

    [80]

    梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平 2018 67 137510Google Scholar

    Liang X, Zhao L, Qiu L, Li S, Ding L H, Feng Y H, Zhang X C, Zhou Y, Zhao G P 2018 Acta Phys. Sin. 67 137510Google Scholar

    [81]

    Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L 2017 Nat. Phys. 13 162Google Scholar

    [82]

    Zhang X C, Zhou Y, Ezawa M 2017 Nat. Commun. 7 10293

    [83]

    Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204Google Scholar

    [84]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203Google Scholar

    [85]

    Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Zhou Y 2018 Phys. Rev. B 98 134448Google Scholar

    [86]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [87]

    Hirata Y, Kim D H, Kim S K, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J 2019 Nat. Nanotechnol. 14 232Google Scholar

    [88]

    Zhang J Y, Zhang Y, Gao Y, Zhao G P, Qiu L, Wang K Y, Dou P W, Peng W L, Zhuang Y, Wu Y F, Yu G Q, Zhu Z Z, Zhao Y C, Guo Y Q, Zhu T, Cai J W, Shen B G, Wang S G 2020 Adv. Mater. 32 1907452Google Scholar

    [89]

    郭尔佳, 朱涛 2019 物理 48 708Google Scholar

    Guo E J, Zhu T 2019 Physics 48 708Google Scholar

    [90]

    Ankner J F, Felcher G P 1999 J. Magn. Magn. Mater. 200 741Google Scholar

    [91]

    Zhu T, Yang Y, Yu R C, Ambaye H, Lauter V, Xiao J Q 2012 Appl. Phys. Lett. 100 202406Google Scholar

    [92]

    Liu T, Lacour D, Montaigne F, Gall S Le, Hehn M, Hauet T 2015 Appl. Phys. Lett. 106 052406Google Scholar

    [93]

    孙明娟, 刘要稳 2015 64 247505Google Scholar

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505Google Scholar

    [94]

    Xu H N, Xia Y D, Xu B, Yin J, Yuan G L, Liu Z G 2016 Sci. Rep. 6 27022Google Scholar

    [95]

    Saldanha D R, Dugato D A, Mori T J A, Daudt N F, Dorneles L S, Denardin J C 2018 J. Phys. D: Appl. Phys. 51 395001Google Scholar

    [96]

    Pattnaik D P, Beardsley R P, Love C, Cavill S A, Edmonds K W, Rushforth A W 2019 Sci. Rep. 9 3156Google Scholar

    [97]

    van Thiel T C, Groenendijk D J, Caviglia A D 2020 J. Phys.: Mater. 3 025005Google Scholar

    [98]

    Wysocki L, Yang L, Gunkel F, Dittmann R, van Loosdrecht P H M, Vrejoiu I L 2020 Phys. Rev. Mater. 4 054402Google Scholar

    [99]

    Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, Zhao J H 2020 Chin. Phys. Lett. 37 077303Google Scholar

    [100]

    Wang H, Dai Y Y, Liu Z R, Xie Q D, Liu C, Lin W N, Liu L, Yang P, Wang J, Venkatesan T V, Chow G M, Tian H, Zhang Z D, Chen J S 2020 Adv. Mater. 32 1904415Google Scholar

  • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应.  , 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] 史猛, 王伟伟, 杜海峰. 基于符号回归方法探索磁性斯格明子结构近似解析式.  , 2024, 73(1): 011201. doi: 10.7498/aps.73.20231473
    [3] 刘益, 钱正洪, 朱建国. 室温磁性斯格明子材料及其应用研究进展.  , 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [4] 迟晓丹, 胡勇. 中心对称的阻挫磁体中斯格明子直径的调节.  , 2018, 67(13): 137502. doi: 10.7498/aps.67.20172709
    [5] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展.  , 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [6] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究.  , 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [7] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望.  , 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [8] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究.  , 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [9] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用.  , 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [10] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展.  , 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [11] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为.  , 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [12] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控.  , 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [13] 李子安, 柴可, 张明, 朱春辉, 田焕芳, 杨槐馨. 纳米结构中磁斯格明子的原位电子全息研究.  , 2018, 67(13): 131203. doi: 10.7498/aps.67.20180426
    [14] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展.  , 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [15] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理.  , 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [16] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储.  , 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [17] 李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰. 薄膜异质结中磁性斯格明子的相关研究.  , 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [18] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用.  , 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [19] 谭明亮, 朱正和, 赵永宽, 陈晓峰. 类铜Au50+精细结构能级和光谱跃迁的相对论多组态计算.  , 1996, 45(10): 1609-1614. doi: 10.7498/aps.45.1609
    [20] 王宛珏. 类氮KⅩⅢ,CaⅪⅤ,ScⅩⅤ和TiⅩⅥ精细结构能级和跃迁波长的相对论多组态Dirac-Fock计算.  , 1992, 41(5): 726-731. doi: 10.7498/aps.41.726
计量
  • 文章访问数:  9205
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2020-11-28
  • 上网日期:  2021-02-08
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map