Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Statistical characteristics of total ionizing dose effects of bipolar transistors

Li Shun Song Yu Zhou Hang Dai Gang Zhang Jian

Citation:

Statistical characteristics of total ionizing dose effects of bipolar transistors

Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The base current (IB) of silicon bipolar transistor degrades when it is subjected to total ionizing dose (TID) irradiation, which is due to the generation of oxide trapped charges (Not) in the oxide layer and interface traps (Nit) at the silica/silicon interface. In this work, we investigate the statistical characteristic of IB of bipolar transistors and its possible microscopic origin. Especially, we carry out TID irradiation experiments on a large sample size of gated lateral PNP (GLPNP) transistors. Forty GLPNP transistors are sequentially irradiated to the total doses of 0.6 krad (Si), 2.6 krad (Si), 4.0 krad (Si), 7.4 krad (Si), and 10.8 krad (Si). The statistical characteristics of their IB, Not, and Nit are obtained from the Gummel, gate sweep (GS), and sub-threshold sweep (DS) curves, respectively. It is found that no matter what the dose is, IB, Not, and Nit all follow a lognormal distribution. However, the distribution parameters change as the irradiation dose increases. Remarkably, the statistical median and standard deviation of IB as a function of dose show a strong correlation with those of Not, but essentially differ from those of Nit. This fact uncovers that for our research objects and dose rate, the sample-to-sample variability of IB mainly stems from the variation of Not. These interesting results should have potential applications in exploring the mechanism and evaluating the irradiation reliability of bipolar microcircuits.
      Corresponding author: Song Yu, kwungyusung@gmail.com ; Zhang Jian, jianzhang@uestc.edu.cn
    • Funds: Project supported by the Scientific Challenge Project, China (Grant No. TZ2016003-1)
    [1]

    Bernstein K, Frank D J, Gattiker A R 2006 IBM J. Res. Dev. 50 433Google Scholar

    [2]

    Blair R R 1963 IEEE Trans. Nucl. Sci. 10 35Google Scholar

    [3]

    Krieg J, Tuflinger T, Pease R 2001 NSREC Vancouver British Columbia, Canada, July 16–20, 2001 pp167–172

    [4]

    Pease R L, Combs W E, Johnston A, Carriere T, Poivey C, Gach A, Mc- Clure S 1996 IEEE REDW Indian Wells California, USA, July 19−23, 1996 pp28−34

    [5]

    Johnston A H, Lancaster C A 1979 IEEE Trans. Nucl. Sci. 26 4769Google Scholar

    [6]

    Kruckmeyer K, McGee L, Brown B, Hughart D 2008 IEEE REDW Tucson Arizon, USA, July 14–18, 2008 pp110–116

    [7]

    Kruckmeyer K, McGee L, Brown B, Miller L 2009 RADECS 2009 Brugge, Belgium, September 14–18, 2009 pp586–592

    [8]

    Gorelick J L, Ladbury R, Kanchawa L 2004 IEEE Trans. Nucl. Sci. 51 3679Google Scholar

    [9]

    Guillermin J, Sukhaseum N, Varotsou A, Privat A, Garcia P, VailléM, Thomas J C, Chatry N, Poivey C 2016 RADECS 2016 Bremen, Germany, September 19−23, 2016 pp1−7

    [10]

    Bozovich A N, Irom F 2017 IEEE REDW New Orleans, United States, July 17−21, 2017 pp1−8

    [11]

    Song Y, Zhou H, Cai X F 2020 ACS Appl. Mater. Interfaces 12 29993

    [12]

    Song Y, Wei S H 2020 ACS Appl. Electron. Mater. 2 3783Google Scholar

    [13]

    Dressendorfer P V 1998 Tech. Rep. (Sandia National Labs., Albuquerque, NM, United States) pp1–9

    [14]

    McLean F B, Oldham T R 1987 Tech. Rep. (DTIC Document) pp1−8

    [15]

    McWhorter P, Winokur P 1986 Appl. Phys. Lett. 48 133Google Scholar

    [16]

    Ortiz-Conde A, Sánchez F G, Liou J J, Cerdeira A, Estrada M, Yue Y 2002 Microelectron. Reliab. 42 583Google Scholar

    [17]

    Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185Google Scholar

    [18]

    Li X J, Yang J, Chen H, Dong S, Lv G 2019 IEEE Trans. Nucl. Sci. 66 1612Google Scholar

    [19]

    Winokur P S, Boesch H E, McGarrity Jr J M, McLean F B 1979 J. Appl. Phys. 50 3492Google Scholar

    [20]

    Gaddum J H 1945 Nature 156 463Google Scholar

    [21]

    Barnaby H, Vermeire B, Campola M 2015 IEEE Trans. Nucl. Sci. 62 1658Google Scholar

    [22]

    Barnaby H, Smith S, Schrimpf R, Fleetwood D, Pease R 2002 IEEE Trans. Nucl. Sci. 49 2643Google Scholar

    [23]

    Tolleson B S, Adell P, Rax B, Barnaby H, Privat A, Han X, Mahmud A, Livingston I 2018 IEEE Trans. Nucl. Sci. 65 1488Google Scholar

    [24]

    Pierret R F, Neudeck G W 1987 Advanced Semiconductor Fundamentals (Vol. 6) (Massachusetts: Addison-Wesley Reading) pp123−235

    [25]

    McWhorter P, Winokur P 1986 Applied Physical Letters 48 133

    [26]

    Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar

    [27]

    Song Y, Zhang G, Liu Y, Zhou H, Zhong L, Dai G, Zuo X, Wei S H 2020 arXiv preprint arXiv 2008 04486

  • 图 1  GLPNP器件的结构示意图

    Figure 1.  Structure of the GLPNP transistor.

    图 2  不同总剂量条件下GLPNP基极电流的分布特性

    Figure 2.  Statistical characteristics of the base current of GLPNP under different total doses as indicated in each subfigure.

    图 3  分布参数 (a) $ \mu $和 (b)$ \sigma $ 随总剂量的变化规律

    Figure 3.  Statistical parameters (a) $ \mu $ and (b) $ \sigma $ as a function of the total dose.

    图 4  不同总剂量条件下Not的分布特性

    Figure 4.  Statistical characteristics of Not under different total dose irradiations.

    图 5  不同总剂量条件下Nit分布特性

    Figure 5.  Statistical characteristics of Nit under different total dose irradiations.

    表 1  GLPNP的结构尺寸参数

    Table 1.  Structure parameters of the GLPNP transistor.

    序号结构尺寸参数
    1发射极尺寸直径 = 9 μm
    2基区尺寸外内半径差12 μm
    空心圆环
    3集电极尺寸面积 = 1449.135 μm2
    4发射极与集电极距离
    (EC间距)
    L = 12 μm
    5集电极与基区距离
    (CB间距)
    L = 14 μm
    DownLoad: CSV
    Baidu
  • [1]

    Bernstein K, Frank D J, Gattiker A R 2006 IBM J. Res. Dev. 50 433Google Scholar

    [2]

    Blair R R 1963 IEEE Trans. Nucl. Sci. 10 35Google Scholar

    [3]

    Krieg J, Tuflinger T, Pease R 2001 NSREC Vancouver British Columbia, Canada, July 16–20, 2001 pp167–172

    [4]

    Pease R L, Combs W E, Johnston A, Carriere T, Poivey C, Gach A, Mc- Clure S 1996 IEEE REDW Indian Wells California, USA, July 19−23, 1996 pp28−34

    [5]

    Johnston A H, Lancaster C A 1979 IEEE Trans. Nucl. Sci. 26 4769Google Scholar

    [6]

    Kruckmeyer K, McGee L, Brown B, Hughart D 2008 IEEE REDW Tucson Arizon, USA, July 14–18, 2008 pp110–116

    [7]

    Kruckmeyer K, McGee L, Brown B, Miller L 2009 RADECS 2009 Brugge, Belgium, September 14–18, 2009 pp586–592

    [8]

    Gorelick J L, Ladbury R, Kanchawa L 2004 IEEE Trans. Nucl. Sci. 51 3679Google Scholar

    [9]

    Guillermin J, Sukhaseum N, Varotsou A, Privat A, Garcia P, VailléM, Thomas J C, Chatry N, Poivey C 2016 RADECS 2016 Bremen, Germany, September 19−23, 2016 pp1−7

    [10]

    Bozovich A N, Irom F 2017 IEEE REDW New Orleans, United States, July 17−21, 2017 pp1−8

    [11]

    Song Y, Zhou H, Cai X F 2020 ACS Appl. Mater. Interfaces 12 29993

    [12]

    Song Y, Wei S H 2020 ACS Appl. Electron. Mater. 2 3783Google Scholar

    [13]

    Dressendorfer P V 1998 Tech. Rep. (Sandia National Labs., Albuquerque, NM, United States) pp1–9

    [14]

    McLean F B, Oldham T R 1987 Tech. Rep. (DTIC Document) pp1−8

    [15]

    McWhorter P, Winokur P 1986 Appl. Phys. Lett. 48 133Google Scholar

    [16]

    Ortiz-Conde A, Sánchez F G, Liou J J, Cerdeira A, Estrada M, Yue Y 2002 Microelectron. Reliab. 42 583Google Scholar

    [17]

    Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185Google Scholar

    [18]

    Li X J, Yang J, Chen H, Dong S, Lv G 2019 IEEE Trans. Nucl. Sci. 66 1612Google Scholar

    [19]

    Winokur P S, Boesch H E, McGarrity Jr J M, McLean F B 1979 J. Appl. Phys. 50 3492Google Scholar

    [20]

    Gaddum J H 1945 Nature 156 463Google Scholar

    [21]

    Barnaby H, Vermeire B, Campola M 2015 IEEE Trans. Nucl. Sci. 62 1658Google Scholar

    [22]

    Barnaby H, Smith S, Schrimpf R, Fleetwood D, Pease R 2002 IEEE Trans. Nucl. Sci. 49 2643Google Scholar

    [23]

    Tolleson B S, Adell P, Rax B, Barnaby H, Privat A, Han X, Mahmud A, Livingston I 2018 IEEE Trans. Nucl. Sci. 65 1488Google Scholar

    [24]

    Pierret R F, Neudeck G W 1987 Advanced Semiconductor Fundamentals (Vol. 6) (Massachusetts: Addison-Wesley Reading) pp123−235

    [25]

    McWhorter P, Winokur P 1986 Applied Physical Letters 48 133

    [26]

    Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar

    [27]

    Song Y, Zhang G, Liu Y, Zhou H, Zhong L, Dai G, Zuo X, Wei S H 2020 arXiv preprint arXiv 2008 04486

Metrics
  • Abstract views:  5387
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2020
  • Accepted Date:  08 February 2021
  • Available Online:  25 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回
Baidu
map