-
During the service of the spacecraft, it will be disturbed by the energetic particles and rays, and thus induce total ionizing dose (TID), displacement damage (DD) or single event effect (SEE) to generate inside the electronic system, which can seriously affect the service lifetime of the electronic components. The difference in structure and types of electronic components are less sensitive to the radiation effects, but bipolar transistor is strongly sensitive to ionizing radiation effect. As a basic component of bipolar circuits, the in-depth study of bipolar transistor ionization radiation effect is of significance for engineering. It has been shown that the an amount of hydrogen can inevitably introduced from an external source during the sealing process of the devices. The KOVAR alloy is widely used as a metal cap material of bipolar transistor in the process of encapsulation. The residual gas analysis (RGA) for sealed Kovar lid packages is shown to have 1%–2% of the hydrogen in the cavity. The source of the hydrogen is generally considered to be out-gassing from the gold plating on the KOVAR. So far, the researches have focused on the study of the ionization damage effect of bipolar transistors with different structures under 60Co gamma ray irradiation. There is lack of systemic study on the comparison of transistors packaged with and without cap.In this paper, we study the influence of sealed KOVAR lid packaged on ionizing radiation damage of lateral PNP bipolar transistor (LPNP) by using 60Co gamma ray as an irradiation source. The semiconductor parameter analyzer is used to measure the electrical parameters of LPNP transistor during irradiation. The irradiation defects in LPNP transistors packaged with and without cap are characterized by deep level transient spectroscopy (DLTS). Experimental results show that the LPNP transistors packaged with and without cap have similar electrical characteristics. The base current increases with the total dose increasing, while the collector current remains almost constant. The degradation of LPNP transistor packaged with cap is more serious. According to the excess base current varying with base-emitter voltage for the LPNP transistors packaged with and without cap, the degradation of bipolar transistor packaged with cap is more serious under the same irradiation conditions. According to the analysis of DLTS, comparing with bipolar transistor packaged without cap, the signal peak at about 300 K is shifted to the left for the bipolar transistor packaged with cap. These results indicate that the LPNP transistors packaged with cap can generate more interface states during irradiation, which is attributed to a large amount of hydrogen and water vapor out-gassing from the gold plating on the KOVAR, which is released under the thermal stress. In the sealed environment, hydrogen can only diffuse into the device cavity, and is combined with the metal material in the transistor to form metal hydride. Therefore the degradation of transistor is severe under the same irradiation condition. -
Keywords:
- bipolar transistors /
- ionizing radiation /
- KOVAR /
- interface state
[1] Zhang L, Zhang Y M, Zhang Y M, Han C and Ma Y J 2009 Chin. Phys. B 18 3490Google Scholar
[2] Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 066103Google Scholar
[3] Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 056103Google Scholar
[4] Jin J, Wang X Q, Lin S, Song N F 2012 Chin. Phys. B 21 094220Google Scholar
[5] Liu C M, Li X J, Geng H B, Rui E M, Guo L X, Yang J Q 2012 Chin. Phys. B 21 104211Google Scholar
[6] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅 2015 64 024220Google Scholar
Wen L, Li Y D, Guo Q, Ren D Y, Wang B, Maria 2015 Acta Phys. Sin. 64 024220Google Scholar
[7] Johnston A H, Swift G M, Rax B G 1994 IEEE Trans. on Nucl. Sci. 41 2427Google Scholar
[8] McClure S, Pease R L, Will W, Perry G 1994 IEEE Trans. Nucl. Sci. 41 2544Google Scholar
[9] Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dunham G 2004 IEEE Trans. on Nucl. Sci. 51 3723Google Scholar
[10] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹 2013 62 098503Google Scholar
Li X J, Lan M J, Liu C M, Yang J Q, Sun Z L, Xiao L Y, He S Y 2013 Acta Phys. Sin. 62 098503Google Scholar
[11] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. on Nucl. Sci. 55 3169Google Scholar
[12] Pease R L, Platteter D G, Dunham G W, Seiler J E, McClure S, Barnaby H J, Chen X J 2007 IEEE Trans. on Nucl. Sci. 54 2168Google Scholar
[13] Pease R L, Schrimpf R D, Fleetwood D M 2009 IEEE Trans. on Nucl. Sci. 56 1894Google Scholar
[14] Pease R L, Dunham G W, Seiler J E, Platteter D G, McClure S S 2007 IEEE Trans. on Nucl. Sci. 54 1049Google Scholar
[15] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. on Nucl. Sci. 54 1913Google Scholar
[16] Yusoff W Y W, Jalar A, Othman N K, Rahman I A, Shamsudin R, Hamid M A A 2012 ICSE2012-Proc. 4 604
[17] Rodgers M P, Fleetwood D M, Schrimpf R D, Batyrev I G, Wang S, Pantelides S T 2005 IEEE Trans. on Nucl. Sci. 52 2642Google Scholar
[18] Hughart D R, Schrimpf R D, Fleetwood D M, Chen X J, Barnaby H J, Holbert K E, Pease R L, Platteter D G, Tuttle B R, Pantelides S T 2009 IEEE Trans. on Nucl. Sci. 56 3361Google Scholar
[19] Li X J, Yang J Q, Barnaby H J, Galloway K F, Schrimpf R D, Fleetwood D M, Liu C M 2017 IEEE Trans. on Nucl. Sci. 64 1549
[20] Barnaby H J, Vermeire B, Campola M J 2015 IEEE Trans. on Nucl. Sci. 62 1658Google Scholar
[21] Fleetwood D M 2013 IEEE Trans. on Nucl. Sci. 60 1706Google Scholar
[22] Witczak S C, Lacoe R C, Shaneyfelt M R, Mayer D C, Schwank J R, Winokur P S 2000 IEEE Trans. on Nucl. Sci. 47 2281Google Scholar
[23] Li X J, Liu C M, Yang J Q, Zhao Y L, Liu G Q 2013 IEEE Trans. on Nucl. Sci. 60 3924Google Scholar
[24] Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L, Hash G L, Connors M P 1992 IEEE Trans. on Nucl. Sci. 39 2244Google Scholar
[25] Mrstik B J, Rendell R W 1991 IEEE Trans. on Nucl. Sci. 38 1101Google Scholar
[26] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[27] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞 2018 67 168501Google Scholar
Yang J Q, Dong L, Liu C M, Li X J, Xu P F 2018 Acta Phys. Sin 67 168501Google Scholar
-
图 4 剂量率100 rad/s条件下γ辐射吸收剂量对开帽/未开帽处理的LPNP双极晶体管(a)电流增益变化量的影响和(b)电流增益倒数变化量的影响
Figure 4. (a)The relationship between total dose and current gain for LPNP bipolar transistors with/without cap under dose rate of 100 rad (Si)/s with a 60Co gamma irradiation source. (b) The relationship between total dose and the reciprocal of current gain for LPNP bipolar transistors with/without cap under dose rate of 100 rad (Si)/s with a 60Co gamma irradiation source.
-
[1] Zhang L, Zhang Y M, Zhang Y M, Han C and Ma Y J 2009 Chin. Phys. B 18 3490Google Scholar
[2] Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 066103Google Scholar
[3] Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 056103Google Scholar
[4] Jin J, Wang X Q, Lin S, Song N F 2012 Chin. Phys. B 21 094220Google Scholar
[5] Liu C M, Li X J, Geng H B, Rui E M, Guo L X, Yang J Q 2012 Chin. Phys. B 21 104211Google Scholar
[6] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅 2015 64 024220Google Scholar
Wen L, Li Y D, Guo Q, Ren D Y, Wang B, Maria 2015 Acta Phys. Sin. 64 024220Google Scholar
[7] Johnston A H, Swift G M, Rax B G 1994 IEEE Trans. on Nucl. Sci. 41 2427Google Scholar
[8] McClure S, Pease R L, Will W, Perry G 1994 IEEE Trans. Nucl. Sci. 41 2544Google Scholar
[9] Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dunham G 2004 IEEE Trans. on Nucl. Sci. 51 3723Google Scholar
[10] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹 2013 62 098503Google Scholar
Li X J, Lan M J, Liu C M, Yang J Q, Sun Z L, Xiao L Y, He S Y 2013 Acta Phys. Sin. 62 098503Google Scholar
[11] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. on Nucl. Sci. 55 3169Google Scholar
[12] Pease R L, Platteter D G, Dunham G W, Seiler J E, McClure S, Barnaby H J, Chen X J 2007 IEEE Trans. on Nucl. Sci. 54 2168Google Scholar
[13] Pease R L, Schrimpf R D, Fleetwood D M 2009 IEEE Trans. on Nucl. Sci. 56 1894Google Scholar
[14] Pease R L, Dunham G W, Seiler J E, Platteter D G, McClure S S 2007 IEEE Trans. on Nucl. Sci. 54 1049Google Scholar
[15] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. on Nucl. Sci. 54 1913Google Scholar
[16] Yusoff W Y W, Jalar A, Othman N K, Rahman I A, Shamsudin R, Hamid M A A 2012 ICSE2012-Proc. 4 604
[17] Rodgers M P, Fleetwood D M, Schrimpf R D, Batyrev I G, Wang S, Pantelides S T 2005 IEEE Trans. on Nucl. Sci. 52 2642Google Scholar
[18] Hughart D R, Schrimpf R D, Fleetwood D M, Chen X J, Barnaby H J, Holbert K E, Pease R L, Platteter D G, Tuttle B R, Pantelides S T 2009 IEEE Trans. on Nucl. Sci. 56 3361Google Scholar
[19] Li X J, Yang J Q, Barnaby H J, Galloway K F, Schrimpf R D, Fleetwood D M, Liu C M 2017 IEEE Trans. on Nucl. Sci. 64 1549
[20] Barnaby H J, Vermeire B, Campola M J 2015 IEEE Trans. on Nucl. Sci. 62 1658Google Scholar
[21] Fleetwood D M 2013 IEEE Trans. on Nucl. Sci. 60 1706Google Scholar
[22] Witczak S C, Lacoe R C, Shaneyfelt M R, Mayer D C, Schwank J R, Winokur P S 2000 IEEE Trans. on Nucl. Sci. 47 2281Google Scholar
[23] Li X J, Liu C M, Yang J Q, Zhao Y L, Liu G Q 2013 IEEE Trans. on Nucl. Sci. 60 3924Google Scholar
[24] Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L, Hash G L, Connors M P 1992 IEEE Trans. on Nucl. Sci. 39 2244Google Scholar
[25] Mrstik B J, Rendell R W 1991 IEEE Trans. on Nucl. Sci. 38 1101Google Scholar
[26] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[27] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞 2018 67 168501Google Scholar
Yang J Q, Dong L, Liu C M, Li X J, Xu P F 2018 Acta Phys. Sin 67 168501Google Scholar
Catalog
Metrics
- Abstract views: 7950
- PDF Downloads: 73
- Cited By: 0