搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双极晶体管微波损伤效应与机理

马振洋 柴常春 任兴荣 杨银堂 陈斌

引用本文:
Citation:

双极晶体管微波损伤效应与机理

马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌

The damage effect and mechanism of the bipolar transistor caused by microwaves

Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Chen Bin
PDF
导出引用
  • 结合Si基n+-p-n-n+外延平面双极晶体管, 考虑了器件自热、高电场下的载流子迁移率退化和载流子雪崩产生效应, 建立了其在高功率微波(high power microwave, HPM)作用下的二维电热模型. 通过分析器件内部电场强度、电流密度和温度分布随信号作用时间的变化, 研究了频率为1 GHz的等效电压信号由基极和集电极注入时双极晶体管的损伤效应和机理. 结果表明集电极注入时器件升温发生在信号的负半周, 在正半周时器件峰值温度略有下降, 与集电极注入相比基极注入更容易使器件毁伤, 其易损部位是B-E结. 对初相分别为0和的两个高幅值信号的损伤研究结果表明, 初相为的信号更容易损伤器件, 而发射极串联电阻可以有效的提高器件的抗微波损伤能力.
    Combining self-heating effect, mobility degradation in high electric field and avalanche generation effect, a two-dimensional electro-thermal model of the typical silicon-based n+-p-n-n+ structure bipolar transistor induced by high power microwave is established in this paper. By analyzing the variations of device internal distributions of the electric field, the current density and the temperature with time, a detailed investigation of the damage effect and the mechanism of the bipolar transistor under the injection of 1GHz equivalent voltage signals from the base and collector is performed. The results show that temperature elevation occurs in the negative half-period and the maximum temperature falls slightly in the positive half-period when the signals are injected from the collector. Compared with the former, device damage occurs easily with the signals injected from the base. Specifically, the base-emitter junction is susceptible to damage. The damage results caused by two large-amplitude signals with initial phases of 0 and respectively indicate that the injected signal with an initial phase of is liable to cause device damage. Meanwhile, the emitter series resistance can enhance the capability of the device to withstand microwave damage effectively.
    • 基金项目: 国家自然科学基金(批准号: 60776034)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60776034).
    [1]

    Backstrom M G, Lovstrand K G 2004 IEEE Trans. on Electromagn. Compat. 46 396

    [2]

    Brauer F, Sabath F, ter Haseborg J L 2009 IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, USA, August 17–21, p237

    [3]

    Chahine I, Kadi M, Gaboriaud E, Louis A, Mazari B 2008 IEEE Trans. on Electromagn. Compat. 50 285

    [4]

    Wang H Y, Li J Y, Zhou Y H, Hu B, Yu X Y 2009 IEEE Trans. on Electromagn. Compat. 29 393

    [5]

    Hwang S M, Hong J I, Huh C S 2008 Prog. in Electromagn. Res. 81 61

    [6]

    Mansson D, Thottappillil R, Backstrom M, Lunden O 2008 IEEE Trans. on Electromagn. Compat. 50 101

    [7]

    Fan J P, Zhang L, Jia X Z 2010 High Power Laser Part. Beams 22 1319 (in Chinese) [范菊平, 张玲, 贾新章 2010 强激光与粒子束 textbf 22 1319]

    [8]

    Chai C C, Zhang B, Ren X R, Leng P 2010 J. Xidian Univ. 37 898 (in Chinese) [柴常春, 张冰, 任兴荣, 冷鹏 2010 西安电子科技大学学报 textbf 37 898]

    [9]

    Chai C C, Yang Y T, Zhang B Leng P, Yang Y, Rao W 2009 Semicond. Sci. Technol. 24 035003

    [10]

    Xi X W, Chai C C, Ren X R,Yang Y T, Zhang B, Hong X 2010 J. Semicond. 31 32

    [11]

    Xi X W, Chai C C, Ren X R,Yang Y T, Ma Z Y, Wang J 2010 J. Semicond. 31 49

    [12]

    Chai C C, Xi X W, Ren X R, Yang Y T, Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese) [柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋 2010 textbf 59 8118]

    [13]

    Korte S, Camp M, Garbe H 2005 IEEE Trans. on Electromagn. Compat. 2 489

    [14]

    Yang Y C, Tan J C, Sheng D Y, Yang G 2008 High Power Laser Part. Beams 20 649 (in Chinese) [杨雨川, 谭吉春, 盛定仪, 杨耿 2008 强激光与粒子束 textbf 20 649]

    [15]

    Radasky W A 2010 Asia-Pacific Symposium on Electromagnetic Compatibility, Beijing, China, April 12–16, p758

    [16]

    Zhang B, Chai C C, Yang Y T 2010 Acta Phys. Sin. 50 8063 (in Chinese) [张冰, 柴常春, 杨银堂 2010 50 8063]

    [17]

    Integrated Systems Engineering AG 2004 ISE-TCAD Dessis Simulation User's Manual Zurich, Switzerland, p142

    [18]

    Baliga B J, Ghandhi S K 1976 Solid-State Electron. 19 739

    [19]

    Liu S L, Zhang H C, Chai C C 2004 Physics Of Semiconductor Devices (Beijing: Publishing house of electronics industry) p27 [刘树林, 张华曹, 柴常春 2004 半导体器件物理 (北京: 电子工业出版社) 第27页]

  • [1]

    Backstrom M G, Lovstrand K G 2004 IEEE Trans. on Electromagn. Compat. 46 396

    [2]

    Brauer F, Sabath F, ter Haseborg J L 2009 IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, USA, August 17–21, p237

    [3]

    Chahine I, Kadi M, Gaboriaud E, Louis A, Mazari B 2008 IEEE Trans. on Electromagn. Compat. 50 285

    [4]

    Wang H Y, Li J Y, Zhou Y H, Hu B, Yu X Y 2009 IEEE Trans. on Electromagn. Compat. 29 393

    [5]

    Hwang S M, Hong J I, Huh C S 2008 Prog. in Electromagn. Res. 81 61

    [6]

    Mansson D, Thottappillil R, Backstrom M, Lunden O 2008 IEEE Trans. on Electromagn. Compat. 50 101

    [7]

    Fan J P, Zhang L, Jia X Z 2010 High Power Laser Part. Beams 22 1319 (in Chinese) [范菊平, 张玲, 贾新章 2010 强激光与粒子束 textbf 22 1319]

    [8]

    Chai C C, Zhang B, Ren X R, Leng P 2010 J. Xidian Univ. 37 898 (in Chinese) [柴常春, 张冰, 任兴荣, 冷鹏 2010 西安电子科技大学学报 textbf 37 898]

    [9]

    Chai C C, Yang Y T, Zhang B Leng P, Yang Y, Rao W 2009 Semicond. Sci. Technol. 24 035003

    [10]

    Xi X W, Chai C C, Ren X R,Yang Y T, Zhang B, Hong X 2010 J. Semicond. 31 32

    [11]

    Xi X W, Chai C C, Ren X R,Yang Y T, Ma Z Y, Wang J 2010 J. Semicond. 31 49

    [12]

    Chai C C, Xi X W, Ren X R, Yang Y T, Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese) [柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋 2010 textbf 59 8118]

    [13]

    Korte S, Camp M, Garbe H 2005 IEEE Trans. on Electromagn. Compat. 2 489

    [14]

    Yang Y C, Tan J C, Sheng D Y, Yang G 2008 High Power Laser Part. Beams 20 649 (in Chinese) [杨雨川, 谭吉春, 盛定仪, 杨耿 2008 强激光与粒子束 textbf 20 649]

    [15]

    Radasky W A 2010 Asia-Pacific Symposium on Electromagnetic Compatibility, Beijing, China, April 12–16, p758

    [16]

    Zhang B, Chai C C, Yang Y T 2010 Acta Phys. Sin. 50 8063 (in Chinese) [张冰, 柴常春, 杨银堂 2010 50 8063]

    [17]

    Integrated Systems Engineering AG 2004 ISE-TCAD Dessis Simulation User's Manual Zurich, Switzerland, p142

    [18]

    Baliga B J, Ghandhi S K 1976 Solid-State Electron. 19 739

    [19]

    Liu S L, Zhang H C, Chai C C 2004 Physics Of Semiconductor Devices (Beijing: Publishing house of electronics industry) p27 [刘树林, 张华曹, 柴常春 2004 半导体器件物理 (北京: 电子工业出版社) 第27页]

  • [1] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性.  , 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [2] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制.  , 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [3] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究.  , 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [4] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理.  , 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [5] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理.  , 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [6] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理.  , 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [7] 唐涛. 高功率微波土壤击穿的数值验证研究.  , 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [8] 汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英. 60Co-γ射线辐照CMOS有源像素传感器诱发暗信号退化的机理研究.  , 2014, 63(5): 056102. doi: 10.7498/aps.63.056102
    [9] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计.  , 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [10] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究.  , 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [11] 任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍, 史春蕾. 基极注入强电磁脉冲对双极晶体管的损伤效应和机理.  , 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [12] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理.  , 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [13] 刘岩岩, 韩敬华, 段涛, 牛瑞华, 孙年春, 高翔, 杜永兆, 杨李茗, 冯国英. 1064 nm激光对中性密度滤光片的损伤机理研究.  , 2012, 61(7): 076102. doi: 10.7498/aps.61.076102
    [14] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究.  , 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [15] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究.  , 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [16] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究.  , 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [17] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究.  , 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [18] 柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋. 双极晶体管在强电磁脉冲作用下的损伤效应与机理.  , 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [19] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [20] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究.  , 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
计量
  • 文章访问数:  7273
  • PDF下载量:  873
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-15
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回
Baidu
map