-
为从工艺角度深入研究航空航天用互补金属氧化物半导体(CMOS)工艺混合信号集成电路总剂量辐射损伤机理, 选取国产CMOS 工艺制作的NMOS晶体管及寄生双极晶体管进行了60Coγ射线源下的总剂量试验研究. 发现: 1) CMOS工艺中固有的寄生效应导致NMOS晶体管截止区漏电流对总剂量敏感, 随总剂量累积而增 大; 2) 寄生双极晶体管总剂量损伤与常规双极晶体管不同, 表现为对总剂量不敏感, 分析认为两者辐射损伤的差异来源于制作工艺的不同; 3)寄生双极晶体管与NMOS晶体 管的总剂量损伤没有耦合效应; 4)基于上述研究成果, 初步分析CMOS工艺混合信号集成电路中数字模块及模拟模块辐射损伤机制, 认为MOS晶体管截止漏电流增大是导致数字模块功耗增大的主因, 而Bandgap电压基准源模块对总剂量不敏感源于寄生双极晶体管抗总剂量辐射的能力.
-
关键词:
- 总剂量效应 /
- N沟道金属氧化物场效应晶体管 /
- 寄生双极晶体管 /
- Bandgap基准电压源
The metal-oxide-semiconductor field-effect transistor (MOSFET) and the parasitic bipolar transistor of domestic complementary metal oxide semiconductor (CMOS) process are irradiated with 60Coγ rays to investigate the failure mechanism of the mixed-signal ICs fabricated by deep submicron CMOS process, caused by total dose radiation. The research results are as follows. 1) The parasitic sidewall and top corner regions contribute to the intra-device leakage. 2) The parasitic bipolar transistor of CMOS process is not sensitive to total dose radiation, which is very different from the conventional bipolar transistor. Preliminary analysis suggests that the difference originates from the differences in the structural and making process. 3) The total dose radiation damage to the parasitic bipolar transistors is not coupled with the damage to the NMOS transistor in the same CMOS process. 4) Based on the above study, the radiation failure mechanisms of the analog and digital module in mixed-signal ICs fabricated respectively by the domestic and commercial CMOS process are investigated. Preliminary analysis suggests that the increase of off-leakage current of MOSFET is responsible mainly for the increase in power consumption of digital module, and the insensitivity of bandgap voltage reference to total dose radiation originates from the radiation resistance of the parasitic bipolar transistor which is the important part of bandgap voltage reference in CMOS mixed-signal ICs.-
Keywords:
- total dose radiation /
- NMOSFET /
- parasitic transistor /
- bandgap voltage reference
[1] Johns D A, Matin K 1997 Analog Integrated Circuit Design E1 (New York: John Wiley & Sons Inc) pp357-364
[2] Lacoe R C 2010 IEEE Trans. Nucl. Sci. 55 1903
[3] Johnston A H, Swimm R T, Allen G R 2009 IEEE Trans. Nucl. Sci. 56 1941
[4] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701
[5] Chen H F, Guo L X 2012 Acta Phys. Sin. 61 028501 (in Chinese) [陈海峰, 过立新 2012 61 028501]
[6] Cui J W, Yu X F, Ren D Y, Lu J 2012 Acta Phys. Sin. 61 026102 (in Chinese) [崔江维, 余学峰, 任迪远, 卢建 2012 61 026102]
[7] Ning B X, Hu Z Y, Zhang Z X, Bi D W, Huang H X, Dai R F, Zhang Y W, Zou S C 2013 Acta Phys. Sin. 62 076104 (in Chinese) [宁冰旭, 胡志远, 张正选, 毕大炜, 黄辉祥, 戴若凡, 张彦伟, 邹世昌 2013 62 076104]
[8] Kruckmeyer K, Prater J S, Brown B, Trinh T 2011 IEEE Trans. Nucl. Sci. 58 1023
[9] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[10] Faccio F, Barnaby H J, Chen X J, Fleetwood D M, Gonella L, McLain M, Ronald D S 2008 Microelectron. Reliab. 48 1000
[11] Youk G U, Khare P S, Schrimpf R D, Massengill L W 1999 IEEE Trans. Nucl. Sci. 46 1830
[12] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Chin. Phys. Lett. 28 070701
[13] Pease R L 2003 IEEE Trans. Nucl. Sci. 50 539
[14] Johnston A H, Rax B G, Lee C I 1995 IEEE Trans. Nucl. Sci. 42 1650
[15] Schmidt D M, Fleetwood D M, Schrimpf R D, Pease R L 1995 IEEE Trans. Nucl. Sci. 42 1541
[16] Freitag R K, Brown D B 1998 IEEE Trans. Nucl. Sci. 45 2649
[17] Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986
[18] Razavi B 2001 Design of Analog CMOS Integrated Circuits (New York: The McGraw-Hill Press)
[19] Martin K 2001 Digital Integrated Circuit Design (Oxford: Oxford University Press)
-
[1] Johns D A, Matin K 1997 Analog Integrated Circuit Design E1 (New York: John Wiley & Sons Inc) pp357-364
[2] Lacoe R C 2010 IEEE Trans. Nucl. Sci. 55 1903
[3] Johnston A H, Swimm R T, Allen G R 2009 IEEE Trans. Nucl. Sci. 56 1941
[4] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701
[5] Chen H F, Guo L X 2012 Acta Phys. Sin. 61 028501 (in Chinese) [陈海峰, 过立新 2012 61 028501]
[6] Cui J W, Yu X F, Ren D Y, Lu J 2012 Acta Phys. Sin. 61 026102 (in Chinese) [崔江维, 余学峰, 任迪远, 卢建 2012 61 026102]
[7] Ning B X, Hu Z Y, Zhang Z X, Bi D W, Huang H X, Dai R F, Zhang Y W, Zou S C 2013 Acta Phys. Sin. 62 076104 (in Chinese) [宁冰旭, 胡志远, 张正选, 毕大炜, 黄辉祥, 戴若凡, 张彦伟, 邹世昌 2013 62 076104]
[8] Kruckmeyer K, Prater J S, Brown B, Trinh T 2011 IEEE Trans. Nucl. Sci. 58 1023
[9] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[10] Faccio F, Barnaby H J, Chen X J, Fleetwood D M, Gonella L, McLain M, Ronald D S 2008 Microelectron. Reliab. 48 1000
[11] Youk G U, Khare P S, Schrimpf R D, Massengill L W 1999 IEEE Trans. Nucl. Sci. 46 1830
[12] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Chin. Phys. Lett. 28 070701
[13] Pease R L 2003 IEEE Trans. Nucl. Sci. 50 539
[14] Johnston A H, Rax B G, Lee C I 1995 IEEE Trans. Nucl. Sci. 42 1650
[15] Schmidt D M, Fleetwood D M, Schrimpf R D, Pease R L 1995 IEEE Trans. Nucl. Sci. 42 1541
[16] Freitag R K, Brown D B 1998 IEEE Trans. Nucl. Sci. 45 2649
[17] Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986
[18] Razavi B 2001 Design of Analog CMOS Integrated Circuits (New York: The McGraw-Hill Press)
[19] Martin K 2001 Digital Integrated Circuit Design (Oxford: Oxford University Press)
计量
- 文章访问数: 6378
- PDF下载量: 471
- 被引次数: 0