搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双沟槽SiC MOSFET总剂量效应

朱文璐 郭红霞 李洋帆 马武英 张凤祁 白如雪 钟向丽 李济芳 曹彦辉 琚安安

引用本文:
Citation:

双沟槽SiC MOSFET总剂量效应

朱文璐, 郭红霞, 李洋帆, 马武英, 张凤祁, 白如雪, 钟向丽, 李济芳, 曹彦辉, 琚安安

Total ionizing dose effect of double-trench SiC MOSFET

ZHU Wenlu, GUO Hongxia, LI Yangfan, MA Wuying, ZHANG Fengqi, BAI Ruxue, ZHONG Xiangli, LI Jifang, CAO Yanhui, JU Anan
PDF
HTML
导出引用
  • 本文对第四代双沟槽型碳化硅场效应晶体管开展了不同栅极偏置电压下的60Co-γ辐照实验, 并在辐照后进行了室温退火实验. 实验结果表明, 辐照后器件的阈值电压负向漂移, 且在正向栅极偏压下电学性能退化尤为明显. 通过分析器件的1/f噪声特性发现, 在不同栅极偏置条件下辐照后器件的漏极电流噪声归一化功率谱密度升高了4—9个数量级, 这表明辐照后器件内部缺陷密度显著增加. 对辐照后器件进行了24, 48和168 h的室温退火实验, 退火后器件阈值电压有所升高, 表明器件的电学性能在室温下可以部分恢复, 主要因为辐照产生的浅氧化物陷阱电荷在室温下退火, 而深氧化物陷阱电荷和界面陷阱电荷在室温难以恢复. 结合TCAD仿真模拟进一步分析器件总剂量效应微观机制. 结果表明, 辐照在氧化层中诱生的大量氧化物陷阱电荷造成栅极氧化层中靠近沟道一侧的电场强度增大, 导致器件的阈值电压负向漂移, 影响器件性能.
    In this work, the influence of 60Co-γ ray irradiation on double trench SiC metal–oxide–semiconductor field-effect transistors (MOSFETs) is investigated under different conditions. First, the effects of the total ionizing dose (TID) on the electrical performance of the device at different gate bias voltages are studied. The results indicate that at 150 krad (Si) irradiation dose, the threshold voltage of the device after being irradiated decreases by 3.28 and 2.36 V for gate voltages of +5 and –5 V bias, respectively, whereas the threshold voltage of the device after being irradiated decreases by only 1.36 V for a gate voltage of 0 V bias. The threshold voltage of the device after irradiation drifts in the negative direction, and the degradation of the electrical performance is especially obvious under the positive gate bias. This is attributed to the increase in the number of charges trapped in the oxide layer. At the same time, room temperature annealing experiments are performed on the irradiated devices for 24, 48 and 168 h. The shallow oxide trap charges generated by irradiation are annealed at room temperature, while the deep oxide trap charges and interface trap charges are difficult to recover at room temperature, resulting in an increase in the threshold voltage of the devices after being annealed, indicating that the electrical properties of the devices can be partially recovered after being annealed at room temperature. In order to characterize the effect of 60Co-γ ray irradiation on the interfacial state defect density of the devices, low frequency noise (1/f) tests are performed at different doses and different gate bias voltages. The 1/f low frequency noise testing shows that under different bias voltages, the density of irradiation defects in the device increases due to the presence of induced oxide trap charges in the oxide layer of the device after being irradiated and the interfacial trap charges generated at the SiO2/SiC interface. This results in an increase of 4–9 orders of magnitude in the normalized power spectral density of the drain current noise of the irradiated device. To further ascertain the irradiation damage mechanism of the device, a numerical simulation is carried out using the TCAD simulation tool, and the results show that a large number of oxide trap charges induced by irradiation in the oxide layer cause an increase in the electric field strength in the gate oxide layer close to the trench side, which leads to a negative drift of the threshold voltage of the device and affects the performance of the device. The results of this work can provide important theoretical references for investigating the radiation effect mechanism and designing the anti radiation reinforcement of double trench SiC MOSFET devices.
  • 图 1  (a) SiC DTMOSFET单胞结构图; (b) 实际器件的照片

    Fig. 1.  (a) SiC DTMOSFET cell structure; (b) photo of real device.

    图 2  VG = 0 V辐照条件下, SiC DTMOSFET的转移特性曲线随总剂量的变化趋势

    Fig. 2.  Under the irradiation condition of VG = 0 V, the transfer characteristic curve of SiC DTMOSFET changes with the total dose.

    图 3  在剂量为150 krad(Si)辐照条件下, SiC DTMOSFET的转移特性曲线随栅极偏压的变化趋势

    Fig. 3.  Transfer characteristic curves of SiC DTMOSFET varies with gate bias under the irradiation dose of 150 krad(Si).

    图 4  辐照后器件性能退化物理机制

    Fig. 4.  Physical mechanism of device performance degradation after irradiation.

    图 5  SiC DTMOSFET的低频噪声特性 (a) 在VG = 0 V辐照条件下SiC DTMOSFET的低频噪声特性随总剂量的变化趋势; (b) 在剂量为150 krad(Si)辐照条件下SiC DTMOSFET的低频噪声特性随栅极偏压的变化趋势

    Fig. 5.  Low frequency noise characteristics of SiC DTMOSFET: (a) The variation trend of low frequency noise characteristics of SiC DTMOSFET with total dose under VG = 0 V irradiation; (b) the variation trend of low-frequency noise characteristics of SiC DTMOSFET with gate bias under the irradiation dose of 150 krad(Si).

    图 6  SiC DTMOSFET器件退火前后的转移特性(图中的子图为转移特性曲线局部放大图)

    Fig. 6.  Transfer characteristic of double-trench SiC MOSFET devices before and after annealing. The illustration in the figure is a partial enlargement of the transfer characteristic curve.

    图 7  器件结构示意图

    Fig. 7.  Device structure diagram.

    图 8  实验和TCAD仿真得到的SiC DTMOSFET器件 (a)转移特性曲线; (b)输出特性曲线

    Fig. 8.  (a) Transfer characteristic curves; (b) output characteristic curves of SiC DTMOSFET device obtained by experiment and TCAD simulation.

    图 9  栅氧化层引入不同浓度的氧化物固定电荷造成SiC DTMOSFET器件转移特性曲线的漂移

    Fig. 9.  The gate oxide introduces different concentration of oxide fixed charge, which causes the drift of the transfer characteristic curve of SiC DTMOSFET device.

    图 10  器件模型氧化层电场分布情况 (a) 引入氧化物陷阱电荷之前; (b)引入氧化物陷阱电荷之后

    Fig. 10.  Electric field distribution of oxide layer: (a) Before oxide trap charge injection; (b) after oxide trap charge injection.

    表 1  不同栅极偏置电压和辐照剂量下SiC DTMOSFET器件的阈值电压变化量

    Table 1.  The amount of threshold voltage variation for double-trench SiC MOSFET devices with different gate voltages and irradiation doses.

    实验条件 VG = 0 V VG = –5 V VG = +5 V
    50 krad(Si) –0.58 V –1.27 V –1.52 V
    100 krad(Si) –1.07 V –1.54 V –2.15 V
    150 krad(Si) –1.36 V –2.36 V –3.28 V
    下载: 导出CSV

    表 2  辐照剂量为150 krad (si)时不同栅极偏压下的氧化物陷阱电荷和界面态陷阱电荷密度

    Table 2.  The oxide trap charge density and interface trap charge density at different voltages when the irradiation dose is 150 krad(Si).

    实验条件 VG = 0 V VG = –5 V VG = +5 V
    $N{\text{ot}}$/(1010 cm–2) 7.63 12.70 20.10×
    $N{\text{it}}$/(108 cm–2) 28.90 5.75 133.00
    下载: 导出CSV

    表 3  辐照剂量为150 krad (Si)时栅极氧化层中引入不同氧化物固定电荷密度下器件阈值电压变化量

    Table 3.  The threshold voltage variation of the device with different oxide fixed charge concentrations introduced into the gate oxide layer at the irradiation dose of 150 krad (Si).

    $N{\text{ot}}$/(1017 cm–3)2.635.137.63
    $\Delta V{\text{th}}$/V–0.969–1.902–2.826
    下载: 导出CSV
    Baidu
  • [1]

    Matsuda T, Yokoseki T, Mitomo S, Murata K, Makino T, Abe H, Takeyama A, Onoda S, Tanaka Y, Kandori M, Yoshie T, Hijikata Y, Ohshima T 2016 Mater. Sci. Forum 858 860Google Scholar

    [2]

    Murata K, Mitomo S, Matsuda T, Yokoseki T, Makino T, Onoda S, Takeyama A, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T, Hijikata Y 2017 Phys. Status Solidi A 214 1600446Google Scholar

    [3]

    Ohshima T, Yoshikawa M, Itoh H, Aoki Y, Nashiyama I 1999 Mater. Sci. Eng. , B 61–62 480

    [4]

    Takeyama A, Makino T, Okubo S, Tanaka Y, Yoshie T, Hijikata Y, Ohshima T 2019 Materials 12 2741Google Scholar

    [5]

    Dimitrijev S, Jamet P 2003 Microelectron. Reliab. 43 225Google Scholar

    [6]

    Liu J, Lu J, Tian X, Chen H, Bai Y, Liu X 2020 Electron. Lett. 56 1273Google Scholar

    [7]

    Pappis D, Zacharias P 2017 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe) Warsaw, Poland, September 11-14, 2017 p2017-12-14

    [8]

    Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021 Electr. Eng. Jpn. 214 e23323Google Scholar

    [9]

    Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V, Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453Google Scholar

    [10]

    Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258Google Scholar

    [11]

    Popelka S, Hazdra P 2016 Mater. Sci. Forum 858 856Google Scholar

    [12]

    Yu Q, Ali W, Cao S, Wang H, Lv H, Sun Y, Mo R, Wang Q, Mei B, Sun J, Zhang H, Tang M, Bai S, Zhang T, Bai Y, Zhang C 2022 IEEE Trans. Nucl. Sci. 69 1127Google Scholar

    [13]

    Sampath M, Morisette D, Cooper J 2018 Mater. Sci. Forum 924 752Google Scholar

    [14]

    顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2021 70 166101Google Scholar

    Gu Z Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 Acta Phys. Sin. 70 166101Google Scholar

    [15]

    陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪 2009 58 4090Google Scholar

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090Google Scholar

    [16]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar

    [17]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [18]

    孟洋 2024 硕士学位论文学位论文 (扬州: 扬州大学)

    Meng Y 2024 M. S. Thesis (Yangzhou: Yang Zhou University

    [19]

    万欣 2017 博士学位论文学位论文 (北京: 清华大学)

    Wan X 2016 Ph. D. Dissertation (Beijing: Tsinghua University

    [20]

    Fleetwood D M, Winokur P S, Schwank J R 1988 IEEE Trans. Nucl. Sci. 35 1497Google Scholar

    [21]

    Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L, Sexton F W 1990 IEEE Trans. Nucl. Sci. 37 1632Google Scholar

    [22]

    McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133Google Scholar

    [23]

    Mitomo S, Matsuda T, Murata K, Yokoseki T, Makino T, Takeyama A, Onoda S, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T, Hijikata Y 2017 Phys. Status Solidi A 214 1600425Google Scholar

    [24]

    Scofield J H, Fleetwood D M 1991 IEEE Trans. Nucl. Sci. 38 1567Google Scholar

    [25]

    Silvestri M, Uren M J, Killat N, Marcon D, Kuball M 2013 Appl. Phys. Lett. 103 043506Google Scholar

    [26]

    Wang J L, Chen Y Q, Feng J T, Xu X B, En Y F, Hou B, Gao R, Chen Y, Huang Y, Geng K W 2020 IEEE J. Electron Devices Soc. 8 145Google Scholar

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应.  , doi: 10.7498/aps.73.20231829
    [2] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究.  , doi: 10.7498/aps.71.20211434
    [3] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应.  , doi: 10.7498/aps.71.20211795
    [4] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究.  , doi: 10.7498/aps.70.20211795
    [5] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失.  , doi: 10.7498/aps.70.20210503
    [6] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究.  , doi: 10.7498/aps.70.20202028
    [7] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性.  , doi: 10.7498/aps.70.20201835
    [8] 李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾. 一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤.  , doi: 10.7498/aps.70.20201825
    [9] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能.  , doi: 10.7498/aps.69.20200232
    [10] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度.  , doi: 10.7498/aps.68.20190350
    [11] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失.  , doi: 10.7498/aps.67.20181095
    [12] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究.  , doi: 10.7498/aps.67.20180829
    [13] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究.  , doi: 10.7498/aps.65.057501
    [14] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究.  , doi: 10.7498/aps.63.226101
    [15] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析.  , doi: 10.7498/aps.62.197201
    [16] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响.  , doi: 10.7498/aps.61.177201
    [17] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究.  , doi: 10.7498/aps.61.097802
    [18] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为.  , doi: 10.7498/aps.61.028101
    [19] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究.  , doi: 10.7498/aps.57.6007
    [20] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探.  , doi: 10.7498/aps.53.194
计量
  • 文章访问数:  373
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 修回日期:  2025-01-02
  • 上网日期:  2025-01-08

/

返回文章
返回
Baidu
map