-
结合Si基n+-p-n-n+ 外延平面双极晶体管, 通过分析器件内部的温度分布变化以及电流密度和烧毁时间随信号幅值的变化关系, 研究了其在三角波信号、正弦波信号和方波脉冲信号等三种样式的高功率微波信号作用下的损伤效应和机理. 研究表明, 三种高功率微波信号注入下器件的损伤部位都是发射结, 在频率和信号幅值相同的情况下方波脉冲信号更容易使器件损伤; 位移电流密度和烧毁时间随信号幅值的增大而增大, 而位移电流在总电流所占的比例随信号幅值的增大而减小; 相比于因信号变化率而引起的位移电流, 信号注入功率在高幅值信号注入损伤过程中占主要作用. 利用数据分析软件, 分别得到了三种信号作用下器件烧毁时间和信号频率的变化关系式. 结果表明, 器件烧毁时间随信号频率的增加而增加, 烧毁时间和频率都符合t= afb的关系式.By analyzing the variations of the internal distributions of the temperature with time and the current density and the burnout time with the signal amplitude, we study the internal damage process and mechanism of the typical silicon-based n+-p-n-n+ structure bipolar transistor induced by three kinds of high power microwaves such as triangular wave, sinusoidal wave and square wave. The results show that the base-emitter junction is the damage position and the device is more susceptible to damage under the injection of the square waves. The displacement current and the burnout time increase but the proportion of the displacement current in the total current decreases with signal amplitude increasing. The injected power plays a determinative role in the damage process compared with the displacement current. Adopting the data analysis software, the relation equation between the burnout time t and the signal frequency f is obtained. It is demonstrated that the burnout time increases with signal frequency increasing, and the equations of the three kinds of high power microwaves all agree with the formula t= afb.
-
Keywords:
- bipolar transistor /
- high power microwave /
- damage mechanism /
- signal type
[1] Kim K, Iliadis A A 2010 Solid-State Electronics 54 18
[2] Iliadis A A, Kim K 2010 IEEE Trans. Dev. Mater. Reliab. 10 347
[3] Chen X, Du Z W 2010 Int. Rev. Electr. Eng. IREE 5 2500
[4] Wang H Y, Li J Y, Zhou Y H, Hu B, Yu X Y 2009 Electromagnetics 29 393
[5] Nana R K, Korte S, Dickmann S, Garbe H, Sabath F 2009 Adv. Radio Sci. 7 249
[6] Wang H Y, Li J Y, Li H 2008 Prog. Electromagn. Res. 87 313
[7] Mansson D, Thottappillil R, Nilsson T, Lunden O, Backstrom M 2008 IEEE Trans. Electromagn. Compat. 50 434
[8] Mansson D, Thottappillil R, Backstrom M, Lunden O 2008 IEEE Trans. on Electromagn. Compat. 50 101
[9] You H L, Lan J C, Fan J P, Jia X Z, Zha W 2012 Acta Phys. Sin. 61 108501 (in Chinese) [游海龙, 蓝建春, 范菊平, 贾新章, 查薇 2012 61 108501]
[10] Ren Z, Yin W Y, Shi Y B, Liu Q H 2010 IEEE Trans. Electron Dev. 57 345
[11] Chai C C, Xi X W, Ren X R, Yang Y T, Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese) [柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋 2010 59 8118]
[12] Kim K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 329
[13] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese) [马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌2012 物理 学报 61 078501]
[14] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Zhao Y B 2012 Chin. Phys. B 21 058502
[15] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K, Zhao Y B 2012 Chin. Phys. B 21 098502
[16] Integrated Systems Engineering Corp. 2004 ISE-TCAD Dessis Simulation User's Manual, Zurich, Switzerland, 2004 p208
[17] Radasky W A 2010 Asia-Pacific Symposium on Electromagnetic Compatibility Beijing, China, April 12-16, 2010 p758
[18] Kim K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 876
[19] Li M Z, Guo C, Chen X B 2006 J. Semicond. 27 1989 (in Chinese) [李梅芝, 郭超, 陈星弼 2006 半导体学报 27 1989]
-
[1] Kim K, Iliadis A A 2010 Solid-State Electronics 54 18
[2] Iliadis A A, Kim K 2010 IEEE Trans. Dev. Mater. Reliab. 10 347
[3] Chen X, Du Z W 2010 Int. Rev. Electr. Eng. IREE 5 2500
[4] Wang H Y, Li J Y, Zhou Y H, Hu B, Yu X Y 2009 Electromagnetics 29 393
[5] Nana R K, Korte S, Dickmann S, Garbe H, Sabath F 2009 Adv. Radio Sci. 7 249
[6] Wang H Y, Li J Y, Li H 2008 Prog. Electromagn. Res. 87 313
[7] Mansson D, Thottappillil R, Nilsson T, Lunden O, Backstrom M 2008 IEEE Trans. Electromagn. Compat. 50 434
[8] Mansson D, Thottappillil R, Backstrom M, Lunden O 2008 IEEE Trans. on Electromagn. Compat. 50 101
[9] You H L, Lan J C, Fan J P, Jia X Z, Zha W 2012 Acta Phys. Sin. 61 108501 (in Chinese) [游海龙, 蓝建春, 范菊平, 贾新章, 查薇 2012 61 108501]
[10] Ren Z, Yin W Y, Shi Y B, Liu Q H 2010 IEEE Trans. Electron Dev. 57 345
[11] Chai C C, Xi X W, Ren X R, Yang Y T, Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese) [柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋 2010 59 8118]
[12] Kim K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 329
[13] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese) [马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌2012 物理 学报 61 078501]
[14] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Zhao Y B 2012 Chin. Phys. B 21 058502
[15] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K, Zhao Y B 2012 Chin. Phys. B 21 098502
[16] Integrated Systems Engineering Corp. 2004 ISE-TCAD Dessis Simulation User's Manual, Zurich, Switzerland, 2004 p208
[17] Radasky W A 2010 Asia-Pacific Symposium on Electromagnetic Compatibility Beijing, China, April 12-16, 2010 p758
[18] Kim K, Iliadis A A 2007 IEEE Trans. Electromagn. Compat. 49 876
[19] Li M Z, Guo C, Chen X B 2006 J. Semicond. 27 1989 (in Chinese) [李梅芝, 郭超, 陈星弼 2006 半导体学报 27 1989]
计量
- 文章访问数: 6263
- PDF下载量: 491
- 被引次数: 0