Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Continuum modeling of thermal transport in superlattices and layered materials for new energy matierlas

Li Zhu-Song Steven Zhu

Citation:

Continuum modeling of thermal transport in superlattices and layered materials for new energy matierlas

Li Zhu-Song, Steven Zhu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Both high-efficient thermoelectric materials and thermal insulating coatings requiring low thermal conductivities, layered materials and superlattices prove to be an efficient multiscale material design for such requirements. The interfaces are artificially introduced to scatter thermal phonons, thus hindering thermal transport. Very recently, it has been found that interface modulation can further reduce the thermal conductivity. All of the recent advances originate from highly demanding numerical computations. An efficient estimate of the thermal properties is important for fast and/or high-throughput calculations. In this article, the phonon transport on layered material is studied theoretically for general purposes, based on the fact that long-wavelength phonons contribute dominantly in general. According to the Debye hypothesis, the classical wave equation can describe phonon transport very well. This fact has been very recently used to model phonon transport carbon nanotubes, which justifies the applicability of continuum mechanics for nanomaterials. Furthermore, Kronig and Penny have solved the electron transport on periodic lattices. In a very similar way, for the periodic layered materials and superlattices, with Floquet and linear attenuation theory, the wave equations with and without damping are solved analytically. The wave equation decouples to Helmholtz equations in each direction with periodic excitation functions. In this paper, we propose to model the phonon transport by using Matthew-Hill equation, with which we can obtain the phonon spectrum (i.e. phonon dispersion relation). The proposed theory is justified by two-dimensional (2D) graphene/hexagon boron nitride superlattice and three-dimensional (3D) silicon/germanium superlattices. Like the carbon nanotube cases, using this continuum-mechanics method, we can reproduce the previous numerical results very quickly compared with using published molecular dynamics and density functional theory The effects of interface modulation and phonon localization are shown over full phase space, which further enables the calculating of both high and low bounds of thermal conductivity for all possible superlattices and layered materials. In order to model real interfaces, with considering possible mixing and transition due to other mechanisms, we use the smooth transition function, which is further modeled via sinusoidal series. Very interestingly, interface grading is shown to erase band gaps and delocalize modes. This fact has been seldom reported and can be helpful for designing real materials. Likewise, we take phonon damping (equivalent to inter-phonon scattering) into account by adding damping into the wave equation. It is observed that phonon damping smears the originally sharp boundaries of phonon phase space. In this way, evanescent phonons and transporting phonons can be treated simultaneously on the same footing. The proposed method can be used for modeling the efficient and general thermal materials
      Corresponding author: Li Zhu-Song, zhusongli922@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. DMR-0934206).
    [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [2]

    Heremans J P, Dresselhaus M S, Bell L E, Morelli D T 2013 Nat. Nanotechnol. 8 471

    [3]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [5]

    Nolas G S, Sharp J, Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer) pp12-23

    [6]

    Tsu R 2011 Superlattice to Nanoelectronics (Boston: Elsevier) pp1-7

    [7]

    Chen G 1997 J. Heat Trans. 119 220

    [8]

    Chen G 1999 J. Heat Trans. 121 945

    [9]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [10]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230

    [11]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [12]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347

    [13]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441

    [14]

    Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421

    [15]

    Zhu T, Ye W 2010 Phys. Rev. E 82 036308

    [16]

    Zhu T, Ye W 2011 Phys. Rev. E 84 056316

    [17]

    Zhu T, Ye W 2010 Num. Heat Trans. B 57 203

    [18]

    Zhu T, Ye W 2012 J. Heat Trans. 134 051013

    [19]

    Guo Z, Xu K 2016 arXiv:1602.01680v1

    [20]

    Liu H, Xu K, Zhu T, Ye W 2012 Comput. Fluids 67 115

    [21]

    Munoz E, Lu H, Yakobson B I 2010 Nano Lett. 10 1652

    [22]

    Hill G W 1886 Acta Math. 8 1

    [23]

    van der Pol B, Strutt M J O 1928 Phil. Mag. 5 18

    [24]

    McLachlan N W 1964 Theory and Applications of Mathieu Functions (New York: Dover) pp11-23

    [25]

    Magnus W, Winkler S 1966 Hill's Equation (New York: Interscience) pp7-13

    [26]

    Lyngby P P 1980 Ingenieur-Archiv. 49 15

    [27]

    Kwong M K, Wong J S W 2006 J. Math. Anal. Appl. 320 37

    [28]

    Ruby L 1996 Am. J. Phys. 64 39

    [29]

    Gutierrez-Vega J C 2003 Am. J. Phys. 71 233

    [30]

    Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp180-182

    [31]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [32]

    Zhu T, Ertekin E 2016 arXiv:1602.02419

    [33]

    Savic I, Donadio D, Gygi F, Galli G 2013 Appl. Phys. Lett. 102 073113

    [34]

    Chalopin Y, Esfarjani K, Henry A, Volz S, Chen G 2012 Phys. Rev. B 85 195302

    [35]

    Zhu T, Ertekin E 2015 Phys. Rev. B 91 205429

    [36]

    Taylor J H, Narendra K S 1969 SIAM J. Appl. Math. 17 343

  • [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [2]

    Heremans J P, Dresselhaus M S, Bell L E, Morelli D T 2013 Nat. Nanotechnol. 8 471

    [3]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [5]

    Nolas G S, Sharp J, Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer) pp12-23

    [6]

    Tsu R 2011 Superlattice to Nanoelectronics (Boston: Elsevier) pp1-7

    [7]

    Chen G 1997 J. Heat Trans. 119 220

    [8]

    Chen G 1999 J. Heat Trans. 121 945

    [9]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [10]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230

    [11]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [12]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347

    [13]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441

    [14]

    Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421

    [15]

    Zhu T, Ye W 2010 Phys. Rev. E 82 036308

    [16]

    Zhu T, Ye W 2011 Phys. Rev. E 84 056316

    [17]

    Zhu T, Ye W 2010 Num. Heat Trans. B 57 203

    [18]

    Zhu T, Ye W 2012 J. Heat Trans. 134 051013

    [19]

    Guo Z, Xu K 2016 arXiv:1602.01680v1

    [20]

    Liu H, Xu K, Zhu T, Ye W 2012 Comput. Fluids 67 115

    [21]

    Munoz E, Lu H, Yakobson B I 2010 Nano Lett. 10 1652

    [22]

    Hill G W 1886 Acta Math. 8 1

    [23]

    van der Pol B, Strutt M J O 1928 Phil. Mag. 5 18

    [24]

    McLachlan N W 1964 Theory and Applications of Mathieu Functions (New York: Dover) pp11-23

    [25]

    Magnus W, Winkler S 1966 Hill's Equation (New York: Interscience) pp7-13

    [26]

    Lyngby P P 1980 Ingenieur-Archiv. 49 15

    [27]

    Kwong M K, Wong J S W 2006 J. Math. Anal. Appl. 320 37

    [28]

    Ruby L 1996 Am. J. Phys. 64 39

    [29]

    Gutierrez-Vega J C 2003 Am. J. Phys. 71 233

    [30]

    Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp180-182

    [31]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [32]

    Zhu T, Ertekin E 2016 arXiv:1602.02419

    [33]

    Savic I, Donadio D, Gygi F, Galli G 2013 Appl. Phys. Lett. 102 073113

    [34]

    Chalopin Y, Esfarjani K, Henry A, Volz S, Chen G 2012 Phys. Rev. B 85 195302

    [35]

    Zhu T, Ertekin E 2015 Phys. Rev. B 91 205429

    [36]

    Taylor J H, Narendra K S 1969 SIAM J. Appl. Math. 17 343

  • [1] Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing. Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient. Acta Physica Sinica, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [2] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] Liu Ying-Guang, Xue Xin-Qiang, Zhang Jing-Wen, Ren Guo-Liang. Thermal conductivity of materials based on interfacial atomic mixing. Acta Physica Sinica, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [4] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [5] Guo Yu, Zhou Si, Zhao Ji-Jun. First-principle study of new phase of layered Bi2Se3. Acta Physica Sinica, 2021, 70(2): 027102. doi: 10.7498/aps.70.20201434
    [6] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [7] Liu Ying-Guang, Ren Guo-Liang, Hao Jiang-Shuai, Zhang Jing-Wen, Xue Xin-Qiang. Thermal conductivity of Si/Ge superlattices containing tilted interface. Acta Physica Sinica, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [8] Liu Ying-Guang, Hao Jiang-Shuai, Ren Guo-Liang, Zhang Jing-Wen. Thermal conductivities of different period Si/Ge superlattices. Acta Physica Sinica, 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [9] Xu Hong, Yuan Zheng-Yi, Huang Tong-Fei, Wang Xiao, Chen Zheng-Xian, Wei Jin, Zhang Xiang, Huang Yuan. Inspiration of wrinkles in layered material for the mechanism study of several geological activities. Acta Physica Sinica, 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [10] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [11] Luo Jun-Wei, Li Shu-Shen. Semiconductor Materials Genome Initiative: silicon-based light emission material. Acta Physica Sinica, 2015, 64(20): 207803. doi: 10.7498/aps.64.207803
    [12] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [14] Bao Hua. Prediction of lattice thermal conductivity of solid argon from anharmonic lattice dynamics method. Acta Physica Sinica, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [15] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [16] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15. Acta Physica Sinica, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [17] Wang Jian-Li, Xiong Guo-Ping, Gu Ming, Zhang Xing, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [18] Li Zhi-Hua, Wang Wen-Xin, Liu Lin-Sheng, Jiang Zhong-Wei, Gao Han-Chao, Zhou Jun-Ming. As-soak dependence of interface roughness of AlSb/InAs superlattice. Acta Physica Sinica, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [19] Deng Cheng-Liang, Shao Ming-Zhu, Luo Shi-Yu. Interaction between charged particle and strained superlattice and chaotic behaviours of the system. Acta Physica Sinica, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [20] Gu Pei-Fu, Chen Hai-Xing, Qin Xiao-Yun, Liu Xu. Design of polarization band-pass filters based on the theory of thin-film photonic crystal superlattice. Acta Physica Sinica, 2005, 54(2): 773-776. doi: 10.7498/aps.54.773
Metrics
  • Abstract views:  6913
  • PDF Downloads:  1251
  • Cited By: 0
Publishing process
  • Received Date:  22 February 2016
  • Accepted Date:  25 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map