搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于界面原子混合的材料导热性能

刘英光 薛新强 张静文 任国梁

引用本文:
Citation:

基于界面原子混合的材料导热性能

刘英光, 薛新强, 张静文, 任国梁

Thermal conductivity of materials based on interfacial atomic mixing

Liu Ying-Guang, Xue Xin-Qiang, Zhang Jing-Wen, Ren Guo-Liang
PDF
HTML
导出引用
  • 构造了界面具有原子混合的硅锗(Si/Ge)单界面和超晶格结构. 采用非平衡分子动力学模拟研究了界面原子混合对于单界面和超晶格结构热导率的影响, 重点研究了界面原子混合层数、环境温度、体系总长以及周期长度对不同晶格结构热导率的影响. 结果表明: 由于声子的“桥接”机制, 2层和4层界面原子混合能提高单一界面和少周期数的超晶格的热导率, 但是在多周期体系中, 具有原子混合时的热导率要低于完美界面时的热导率; 界面原子混合会破坏超晶格中声子的相干性输运, 一定程度引起热导率降低; 完美界面超晶格具有明显的温度效应, 而具有原子混合的超晶格热导率对温度的敏感性较低.
    The Si/Ge single interface and superlattice structure with atom mixing interfaces are constructed. The effects of interfacial atomic mixing on thermal conductivity of single interface and superlattice structures are studied by non-equilibrium molecular dynamics simulation. The effects of the number of atomic mixing layers, temperature, total length of the system and period length on the thermal conductivity for different lattice structures are studied. The results show that the mixing of two and four layers of atoms can improve the thermal conductivity of Si/Ge lattice with single interface and the few-period superlattice due to the “phonon bridging” mechanism. When the total length of the system is large, the thermal conductivity of the superlattice with atomic mixing interfaces decreases significantly compared with that of the perfect interface. The interfacial atom mixing will destroy the phonon coherent transport in the superlattice and reduce the thermal conductivity to some extent. The superlattce with perfect interface has obvious temperature effect, while the thermal conductivity of the superlattice with atomic mixing is less sensitive to temperature.
      通信作者: 刘英光, liuyingguang@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52076080)、河北省自然科学基金(批准号: E2020502011)和中央高校基本科研业务费(批准号: 2020MS105)资助的课题
      Corresponding author: Liu Ying-Guang, liuyingguang@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52076080), the Natural Science Foundation of Hebei Province, China (Grant No. E2020502011), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020MS105)
    [1]

    Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar

    [2]

    唐道胜, 曹炳阳 2021 工程热 42 1546

    Tang D S, Cao B Y 2021 J. Eng. Thermophys. 42 1546

    [3]

    Liang Z, Tsai H L 2012 Int. J. Heat Mass Transf. 55 2999Google Scholar

    [4]

    Chen W Y, Yang J K, Wei Z Y, Liu C H, Bi K D, Xu D Y, Li D Y, Chen Y F 2015 Phys. Rev. B 92 134113Google Scholar

    [5]

    Tian Z T, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar

    [6]

    Kechrakos D 1991 J. Phys. Condens. Matter 3 1443Google Scholar

    [7]

    Liang Z, Tsai H L 2011 J. Phys. Condens. Matter 23 495303Google Scholar

    [8]

    O'Brien P J, Shenogin S, Liu J X, Chow P K, Laurencin D, Mutin P H, Yamaguchi M, Keblinski P, Ramanath G 2013 Nat. Mater. 12 118Google Scholar

    [9]

    English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar

    [10]

    Shao C, Bao H 2015 Int. J. Heat Mass Transf. 85 33Google Scholar

    [11]

    Zhou Y G, Zhang X L, Hu M 2016 Nanoscale 8 1994Google Scholar

    [12]

    Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transf. 50 3977Google Scholar

    [13]

    Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [14]

    Jia L, Ju S H, Liang X G, Zhang X 2016 Mater. Res. Express 3 095024Google Scholar

    [15]

    Merabia S, Termentzidis K 2014 Phys. Rev. B 89 054309Google Scholar

    [16]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [17]

    Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 4 eaat9460Google Scholar

    [18]

    Chakraborty P, Chiu I A, Ma T F, Wang Y 2021 Nanotechnology 32 065401Google Scholar

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [20]

    臧毅, 马登科, 杨诺 2017 工程热 38 2686

    Zang Y, Ma D K, Yang N 2017 J. Eng. Thermophys. 38 2686

    [21]

    Qu X L, Gu J J 2020 RSC Adv. 10 1243Google Scholar

    [22]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar

    [23]

    Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar

    [24]

    Wang Y, Vallabhaneni A, Hu J N, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar

    [25]

    Zhang Z W, Chen Y P, Xie Y E, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [26]

    Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar

    [27]

    Sun Y D, Zhou Y G, Han J, Hu M, Xu B, Liu W 2020 J. Appl. Phys. 127 045106Google Scholar

    [28]

    Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar

    [29]

    Ma Y L, Zhang Z W, Chen J G, Sääskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar

    [30]

    Liu Y G, Bian Y Q, Chernatynskiy A, Han Z H 2019 Int. J. Heat Mass Transf. 145 118791Google Scholar

    [31]

    刘英光, 郝将帅, 任国梁, 张静文 2021 70 073101Google Scholar

    Liu Y G, Hao J S, Ren G L, Zhang J W 2021 Acta Phys. Sin. 70 073101Google Scholar

    [32]

    惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401Google Scholar

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401Google Scholar

  • 图 1  不同界面形式的Si/Ge原子模型结构示意图 (a)完美界面晶格结构; (b)界面具有原子混合晶格结构; (c)完美界面超晶格; (d)具有n层原子混合的超晶格

    Fig. 1.  Schematic diagram of Si/Ge atomic structure with different interface: (a) Single perfect interface; (b) single atomic mixing interface; (c) perfect superlattice; (d) superlattice with n-layer atomic mixing.

    图 2  非平衡分子动力学模拟计算热性质示意图

    Fig. 2.  Schematic diagram of thermal properties calculated by non-equilibrium molecular dynamics simulation.

    图 3  在环境温度为300 K时, Si/Ge晶格沿x轴向的温度分布

    Fig. 3.  Temperature profile in the x -direction of the Si/Ge lattice with ambient temperature is 300 K.

    图 4  界面热导与原子混合层数的关系

    Fig. 4.  Thermal conductance as a function of the number of atomic mixing layers.

    图 5  不同界面形式Si/Ge晶格的声子态密度

    Fig. 5.  Phonon density of states as a function of frequency for different Si/Ge interface forms.

    图 6  超晶格热导率随周期数的变化

    Fig. 6.  Thermal conductivity of superlattices as a function of number of periods.

    图 7  完美界面与4层原子混合界面的超晶格声子态密度

    Fig. 7.  Phonon density of states of superlattices with perfect interfaces and 4-layer atomic mixing.

    图 8  完美界面和4层原子混合的超晶格的频谱热导

    Fig. 8.  Spectral thermal conductance of superlattices with perfect interfaces and 4-layer atomic mixing.

    图 9  完美界面与4层原子混合的超晶格的声子参与率

    Fig. 9.  Phonon participation ratio of superlattices with perfect interfaces and 4-layer atomic mixing.

    图 10  超晶格热导率与周期长度的关系

    Fig. 10.  Thermal conductivity of superlattices as a function of period length.

    图 11  超晶格热导率随环境温度的变化

    Fig. 11.  Thermal conductivity of superlattices as a function of ambient temperature.

    Baidu
  • [1]

    Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar

    [2]

    唐道胜, 曹炳阳 2021 工程热 42 1546

    Tang D S, Cao B Y 2021 J. Eng. Thermophys. 42 1546

    [3]

    Liang Z, Tsai H L 2012 Int. J. Heat Mass Transf. 55 2999Google Scholar

    [4]

    Chen W Y, Yang J K, Wei Z Y, Liu C H, Bi K D, Xu D Y, Li D Y, Chen Y F 2015 Phys. Rev. B 92 134113Google Scholar

    [5]

    Tian Z T, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar

    [6]

    Kechrakos D 1991 J. Phys. Condens. Matter 3 1443Google Scholar

    [7]

    Liang Z, Tsai H L 2011 J. Phys. Condens. Matter 23 495303Google Scholar

    [8]

    O'Brien P J, Shenogin S, Liu J X, Chow P K, Laurencin D, Mutin P H, Yamaguchi M, Keblinski P, Ramanath G 2013 Nat. Mater. 12 118Google Scholar

    [9]

    English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar

    [10]

    Shao C, Bao H 2015 Int. J. Heat Mass Transf. 85 33Google Scholar

    [11]

    Zhou Y G, Zhang X L, Hu M 2016 Nanoscale 8 1994Google Scholar

    [12]

    Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transf. 50 3977Google Scholar

    [13]

    Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [14]

    Jia L, Ju S H, Liang X G, Zhang X 2016 Mater. Res. Express 3 095024Google Scholar

    [15]

    Merabia S, Termentzidis K 2014 Phys. Rev. B 89 054309Google Scholar

    [16]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [17]

    Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 4 eaat9460Google Scholar

    [18]

    Chakraborty P, Chiu I A, Ma T F, Wang Y 2021 Nanotechnology 32 065401Google Scholar

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [20]

    臧毅, 马登科, 杨诺 2017 工程热 38 2686

    Zang Y, Ma D K, Yang N 2017 J. Eng. Thermophys. 38 2686

    [21]

    Qu X L, Gu J J 2020 RSC Adv. 10 1243Google Scholar

    [22]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar

    [23]

    Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar

    [24]

    Wang Y, Vallabhaneni A, Hu J N, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar

    [25]

    Zhang Z W, Chen Y P, Xie Y E, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [26]

    Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar

    [27]

    Sun Y D, Zhou Y G, Han J, Hu M, Xu B, Liu W 2020 J. Appl. Phys. 127 045106Google Scholar

    [28]

    Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar

    [29]

    Ma Y L, Zhang Z W, Chen J G, Sääskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar

    [30]

    Liu Y G, Bian Y Q, Chernatynskiy A, Han Z H 2019 Int. J. Heat Mass Transf. 145 118791Google Scholar

    [31]

    刘英光, 郝将帅, 任国梁, 张静文 2021 70 073101Google Scholar

    Liu Y G, Hao J S, Ren G L, Zhang J W 2021 Acta Phys. Sin. 70 073101Google Scholar

    [32]

    惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401Google Scholar

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401Google Scholar

  • [1] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化.  , 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [2] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控.  , 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [4] 刘英光, 任国梁, 郝将帅, 张静文, 薛新强. 含有倾斜界面硅/锗超晶格的导热性能.  , 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [5] 刘英光, 郝将帅, 任国梁, 张静文. 不同周期结构硅锗超晶格导热性能研究.  , 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [6] 黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成. 双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响.  , 2018, 67(4): 040501. doi: 10.7498/aps.67.20171413
    [7] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用.  , 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [8] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [9] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算.  , 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [10] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究.  , 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [11] 王亚珍, 黄平, 龚中良. 热激发效应对界面摩擦的影响.  , 2012, 61(6): 063203. doi: 10.7498/aps.61.063203
    [12] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [13] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光.  , 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究.  , 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [15] 穆武第, 程海峰, 陈朝辉, 唐耿平, 吴志桥. 粗糙界面对Bi2Te3/PbTe超晶格热电优值影响的理论分析.  , 2009, 58(2): 1212-1218. doi: 10.7498/aps.58.1212
    [16] 吴延昭, 谢宁, 刘建静, 焦永芳. 单壁碳纳米管声子谱及比热计算.  , 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [17] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响.  , 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [18] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率.  , 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [19] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 .  , 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  4468
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07
  • 修回日期:  2021-12-25
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回
Baidu
map