-
With the continuous development of information and technology, core components are developing rapidly toward faster running speed, lower energy consumption, and smaller size. Due to the quantum confinement effect, the continuous reduction of size makes materials and devices exhibit many exotic properties that are different from the properties of traditional three-dimensional materials. At an atomic scale level, structure and physical properties, accurately synthesizing, characterizing of materials, property regulation, and manufacturing of electronic devices with good performance all play important roles in developing the electronic devices and relevant applications in the future. Theoretical calculation can efficiently predict the geometric structure, physical properties and interface effects with low consumption but high accuracy. It is an indispensable research means of atomic level manufacturing technology. In this paper, we review the recent progress of two-dimensional materials from the theoretical perspective. This review is divided into three parts, i.e. two-dimensional layered materials, two-dimensional non-layered materials, and two-dimensional heterostructures. Finally, we draw some conclusions and suggest some areas for future investigation.
-
Keywords:
- atomic scale manufacturing /
- two-dimensional crystalline materials /
- first-principles calculation
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar
[3] Shim J, Bae S H, Kong W, et al. 2018 Science 362 665Google Scholar
[4] Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar
[5] Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar
[6] Coy-Diaz H, Bertran F O, Avila C C, Rault J, Le F V 2000 Phys. Status Solidi RRL 9 701
[7] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar
[8] Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar
[9] Gao N, Li J C, Jiang Q 2014 Chem. Phys. Lett. 592 222Google Scholar
[10] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibérian J P 2012 J. Phys. Condens. Matter 24 172001Google Scholar
[11] Qin R, Wang C H, Zhu W J, Zhang Y L 2012 AIP Adv. 2 022159Google Scholar
[12] Amlaki T, Bokdam M, Kelly P J 2016 Phys. Rev. Lett. 116 256805Google Scholar
[13] Zhang L, Bampoulis P, Rudenko A N, Yao Q, Zandvliet H J W 2016 Phys. Rev. Lett. 117 256804
[14] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar
[15] Saxena S, Chaudhary R P, Shukla S 2016 Sci. Rep. 6 31073Google Scholar
[16] Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang D K, Im S 2015 ACS Nano 9 10394Google Scholar
[17] Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H B, Wang S Y 2017 Small 13 1700758Google Scholar
[18] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[19] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar
[20] Lei J C, Zhang X, Zhou Z 2015 Front. Phys. 10 276Google Scholar
[21] Chen J Y, Huang Q, Huang H Y, Mao L C, Liu M Y, Zhang X Y, Wei Y 2020 Nanoscale 12 3574Google Scholar
[22] Glavin N R, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan P M 2020 Adv. Mater. 32 1904302Google Scholar
[23] Kohn W, Sham L J 1965 Phys. Rev 140 1133Google Scholar
[24] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar
[25] Burke K, Perdew J P, Ernzerhof M 1997 Int. J. Quantum Chem. 61 287Google Scholar
[26] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[27] Kurth S, Perdew J P, Blaha P 2015 Int. J. Quantum Chem. 75 889
[28] Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar
[29] Paier J, Marsman M, Kresse G 2007 J. Chem. Phys. 127 024103Google Scholar
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[31] De Raedt H, Hams A H, Michielsen K, Miyashita S, Saito E 2000 Prog. Theor. Phys. Suppl. 138 489Google Scholar
[32] Zurek E 2016 Reviews in Computational Chemistry (Hoboken: Wiley-Blackwell) pp274−326
[33] Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar
[34] Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar
[35] Ozolins V, Majzoub E H, Wolverton C 2009 J. Am. Chem. Soc. 131 230Google Scholar
[36] Ortiz C, Eriksson O, Klintenberg M 2009 Comput. Mater. Sci. 44 1042Google Scholar
[37] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar
[38] Yu L P, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar
[39] Choudhary K, Kalish I, Beams R, Tavazza F 2017 Sci. Rep 7 5179Google Scholar
[40] Jiang Y C, Gao J, Wang L 2016 Sci. Rep 6 19624Google Scholar
[41] Augustin J, Eyert V, Boker T, Frentrup W, Dwelk H, Janowitz C, Manzke R 2000 Phys. Rev. B 62 10812Google Scholar
[42] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar
[43] Haastrup S, Strange M, Pandey M, et al. 2018 2D Mater. 5 042002
[44] Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar
[45] Zhou J, Shen L, Costa M D, Persson K A, Ong S P, Huck P, Lu Y H, Ma X Y, Chen Y M, Tang H M, Feng Y P 2019 Sci. Data 6 86Google Scholar
[46] Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 4193
[47] Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar
[48] Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar
[49] Wu X, Shao Y, Liu H, et al. 2017 Adv. Mater. 29 1605407Google Scholar
[50] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar
[51] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar
[52] Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar
[53] Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F 2018 Nat. Nanotechnol. 13 994Google Scholar
[54] Nakamura S, Senoh M, Iwasa N, Nagahama S I 1995 Jpn. J. Appl. Phys. 34 L797Google Scholar
[55] Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar
[56] Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M 2016 Nat. Commun. 7 12512Google Scholar
[57] Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar
[58] Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar
[59] Merkl P, Mooshammer F, Steinleitner P, Girnghuber A, Lin K Q, Nagler P, Holler J, Schueller C, Lupton J M, Korn T 2019 Nat. Mater. 18 691Google Scholar
[60] Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2014 ACS Nano 8 12717Google Scholar
[61] Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar
[62] Gong Y J, Lin J H, Wang X L, et al. 2014 Nat. Mater. 13 1135Google Scholar
[63] Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y 2015 Nano Lett. 15 486Google Scholar
[64] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar
[65] Yuan J T, Najmaei S, Zhang Z H, Zhang J, Lei S D, Ajayan P M, Yakobson B I, Lou J 2015 ACS Nano 9 555Google Scholar
[66] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6198Google Scholar
[67] Chiu M H, Li M Y, Zhang W, Hsu W T, Chang W H, Terrones M, Terrones H, Li L J 2014 ACS Nano 8 9649Google Scholar
[68] Roy T, Tosun M, Cao X, Fang H, Javey A 2015 ACS Nano 9 2071Google Scholar
[69] Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C, Javey A 2014 ACS Nano 8 6259Google Scholar
[70] Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar
[71] Furchi M M, Pospischil A, Libisch F, Burgdorfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar
[72] Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar
[73] Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242Google Scholar
[74] Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2015 Nanoscale 7 17523Google Scholar
[75] Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar
[76] Torun E, Miranda H P C, Molina-Sanchez A, Wirtz L 2018 Phys. Rev. B 97 245427Google Scholar
[77] Gillen R, Maultzsch J 2018 Phys. Rev. B 97 165306Google Scholar
-
图 3 预测的层状材料结构、成分等信息统计 (a) 晶格常数的相对误差; (b) 化学元素组成; (c) 晶体类型; (d) 晶体空间群; (e) 晶系; (f) 元素种类[39]
Figure 3. Classification of predicted layered materials in term of (a) relative error in lattice constants; (b) chemical compositions; (c) crystal prototypes; (d) crystal space groups; (e) crystal systems; (f) number of distinct chemical constituents[39].
Unique to the ICSD Unique to the COD Common to both Total sum Experimental data CIF inputs 99212 87070 186282 Unique 3D structures (set A) 34548 60354 13521 108423 Layered 3D structures (set B) 3257 1180 1182 5619 DFT calculations Layered 3D, relaxed (set C) 2165 175 870 3210 Binding
energies (set D)1795 126 741 2662 2D easily
exfoliable (EE)663 79 294 1036 2D potentially exfoliable (PE) 524 34 231 789 Total 1187 113 525 1825 Ferromagnetic Antiferromagnetic Metals Co(OH)2, CoO2, ErHCl, ErSeI, EuOBr, EuOI, FeBr2, FeI2,
FeTe, LaCl, NdOBr, PrOBr, ScCl, SmOBr, SmSI, TbBr,
TmI2, TmOI, VS2, VSe2, VTe2, YCl, YbOBr, YbOClCoI2, CrSe2, FeO2, FeOCl, FeSe, PrOI, VOBr Semiconductors CdOCl, CoBr2, CoCl2, CrOBr, CrOCl, CrSBr, CuCl2,
ErSCl, HoSI, LaBr2, NiBr2, NiCl2, NiI2CrBr2, CrI2, LaBr, Mn(OH)2, MnBr2, MnCl2,
MnI2, VBr2, VCl2, VI2, VOBr2, VOCl2 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar
[3] Shim J, Bae S H, Kong W, et al. 2018 Science 362 665Google Scholar
[4] Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar
[5] Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar
[6] Coy-Diaz H, Bertran F O, Avila C C, Rault J, Le F V 2000 Phys. Status Solidi RRL 9 701
[7] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar
[8] Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar
[9] Gao N, Li J C, Jiang Q 2014 Chem. Phys. Lett. 592 222Google Scholar
[10] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibérian J P 2012 J. Phys. Condens. Matter 24 172001Google Scholar
[11] Qin R, Wang C H, Zhu W J, Zhang Y L 2012 AIP Adv. 2 022159Google Scholar
[12] Amlaki T, Bokdam M, Kelly P J 2016 Phys. Rev. Lett. 116 256805Google Scholar
[13] Zhang L, Bampoulis P, Rudenko A N, Yao Q, Zandvliet H J W 2016 Phys. Rev. Lett. 117 256804
[14] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar
[15] Saxena S, Chaudhary R P, Shukla S 2016 Sci. Rep. 6 31073Google Scholar
[16] Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang D K, Im S 2015 ACS Nano 9 10394Google Scholar
[17] Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H B, Wang S Y 2017 Small 13 1700758Google Scholar
[18] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[19] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar
[20] Lei J C, Zhang X, Zhou Z 2015 Front. Phys. 10 276Google Scholar
[21] Chen J Y, Huang Q, Huang H Y, Mao L C, Liu M Y, Zhang X Y, Wei Y 2020 Nanoscale 12 3574Google Scholar
[22] Glavin N R, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan P M 2020 Adv. Mater. 32 1904302Google Scholar
[23] Kohn W, Sham L J 1965 Phys. Rev 140 1133Google Scholar
[24] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar
[25] Burke K, Perdew J P, Ernzerhof M 1997 Int. J. Quantum Chem. 61 287Google Scholar
[26] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[27] Kurth S, Perdew J P, Blaha P 2015 Int. J. Quantum Chem. 75 889
[28] Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar
[29] Paier J, Marsman M, Kresse G 2007 J. Chem. Phys. 127 024103Google Scholar
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[31] De Raedt H, Hams A H, Michielsen K, Miyashita S, Saito E 2000 Prog. Theor. Phys. Suppl. 138 489Google Scholar
[32] Zurek E 2016 Reviews in Computational Chemistry (Hoboken: Wiley-Blackwell) pp274−326
[33] Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar
[34] Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar
[35] Ozolins V, Majzoub E H, Wolverton C 2009 J. Am. Chem. Soc. 131 230Google Scholar
[36] Ortiz C, Eriksson O, Klintenberg M 2009 Comput. Mater. Sci. 44 1042Google Scholar
[37] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar
[38] Yu L P, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar
[39] Choudhary K, Kalish I, Beams R, Tavazza F 2017 Sci. Rep 7 5179Google Scholar
[40] Jiang Y C, Gao J, Wang L 2016 Sci. Rep 6 19624Google Scholar
[41] Augustin J, Eyert V, Boker T, Frentrup W, Dwelk H, Janowitz C, Manzke R 2000 Phys. Rev. B 62 10812Google Scholar
[42] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar
[43] Haastrup S, Strange M, Pandey M, et al. 2018 2D Mater. 5 042002
[44] Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar
[45] Zhou J, Shen L, Costa M D, Persson K A, Ong S P, Huck P, Lu Y H, Ma X Y, Chen Y M, Tang H M, Feng Y P 2019 Sci. Data 6 86Google Scholar
[46] Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 4193
[47] Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar
[48] Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar
[49] Wu X, Shao Y, Liu H, et al. 2017 Adv. Mater. 29 1605407Google Scholar
[50] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar
[51] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar
[52] Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar
[53] Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F 2018 Nat. Nanotechnol. 13 994Google Scholar
[54] Nakamura S, Senoh M, Iwasa N, Nagahama S I 1995 Jpn. J. Appl. Phys. 34 L797Google Scholar
[55] Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar
[56] Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M 2016 Nat. Commun. 7 12512Google Scholar
[57] Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar
[58] Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar
[59] Merkl P, Mooshammer F, Steinleitner P, Girnghuber A, Lin K Q, Nagler P, Holler J, Schueller C, Lupton J M, Korn T 2019 Nat. Mater. 18 691Google Scholar
[60] Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2014 ACS Nano 8 12717Google Scholar
[61] Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar
[62] Gong Y J, Lin J H, Wang X L, et al. 2014 Nat. Mater. 13 1135Google Scholar
[63] Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y 2015 Nano Lett. 15 486Google Scholar
[64] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar
[65] Yuan J T, Najmaei S, Zhang Z H, Zhang J, Lei S D, Ajayan P M, Yakobson B I, Lou J 2015 ACS Nano 9 555Google Scholar
[66] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6198Google Scholar
[67] Chiu M H, Li M Y, Zhang W, Hsu W T, Chang W H, Terrones M, Terrones H, Li L J 2014 ACS Nano 8 9649Google Scholar
[68] Roy T, Tosun M, Cao X, Fang H, Javey A 2015 ACS Nano 9 2071Google Scholar
[69] Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C, Javey A 2014 ACS Nano 8 6259Google Scholar
[70] Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar
[71] Furchi M M, Pospischil A, Libisch F, Burgdorfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar
[72] Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar
[73] Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242Google Scholar
[74] Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2015 Nanoscale 7 17523Google Scholar
[75] Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar
[76] Torun E, Miranda H P C, Molina-Sanchez A, Wirtz L 2018 Phys. Rev. B 97 245427Google Scholar
[77] Gillen R, Maultzsch J 2018 Phys. Rev. B 97 165306Google Scholar
Catalog
Metrics
- Abstract views: 14350
- PDF Downloads: 749
- Cited By: 0