Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles calculation of two-dimensional materials at an atomic scale

Liu Zi-Yuan Pan Jin-Bo Zhang Yu-Yang Du Shi-Xuan

Citation:

First principles calculation of two-dimensional materials at an atomic scale

Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan
PDF
HTML
Get Citation
  • With the continuous development of information and technology, core components are developing rapidly toward faster running speed, lower energy consumption, and smaller size. Due to the quantum confinement effect, the continuous reduction of size makes materials and devices exhibit many exotic properties that are different from the properties of traditional three-dimensional materials. At an atomic scale level, structure and physical properties, accurately synthesizing, characterizing of materials, property regulation, and manufacturing of electronic devices with good performance all play important roles in developing the electronic devices and relevant applications in the future. Theoretical calculation can efficiently predict the geometric structure, physical properties and interface effects with low consumption but high accuracy. It is an indispensable research means of atomic level manufacturing technology. In this paper, we review the recent progress of two-dimensional materials from the theoretical perspective. This review is divided into three parts, i.e. two-dimensional layered materials, two-dimensional non-layered materials, and two-dimensional heterostructures. Finally, we draw some conclusions and suggest some areas for future investigation.
      Corresponding author: Pan Jin-Bo, jbpan@iphy.ac.cn ; Du Shi-Xuan, sxdu@iphy.ac.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 61888102), the National Key R&D Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Shim J, Bae S H, Kong W, et al. 2018 Science 362 665Google Scholar

    [4]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [5]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [6]

    Coy-Diaz H, Bertran F O, Avila C C, Rault J, Le F V 2000 Phys. Status Solidi RRL 9 701

    [7]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar

    [8]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [9]

    Gao N, Li J C, Jiang Q 2014 Chem. Phys. Lett. 592 222Google Scholar

    [10]

    Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibérian J P 2012 J. Phys. Condens. Matter 24 172001Google Scholar

    [11]

    Qin R, Wang C H, Zhu W J, Zhang Y L 2012 AIP Adv. 2 022159Google Scholar

    [12]

    Amlaki T, Bokdam M, Kelly P J 2016 Phys. Rev. Lett. 116 256805Google Scholar

    [13]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, Zandvliet H J W 2016 Phys. Rev. Lett. 117 256804

    [14]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [15]

    Saxena S, Chaudhary R P, Shukla S 2016 Sci. Rep. 6 31073Google Scholar

    [16]

    Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang D K, Im S 2015 ACS Nano 9 10394Google Scholar

    [17]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H B, Wang S Y 2017 Small 13 1700758Google Scholar

    [18]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [19]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [20]

    Lei J C, Zhang X, Zhou Z 2015 Front. Phys. 10 276Google Scholar

    [21]

    Chen J Y, Huang Q, Huang H Y, Mao L C, Liu M Y, Zhang X Y, Wei Y 2020 Nanoscale 12 3574Google Scholar

    [22]

    Glavin N R, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan P M 2020 Adv. Mater. 32 1904302Google Scholar

    [23]

    Kohn W, Sham L J 1965 Phys. Rev 140 1133Google Scholar

    [24]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [25]

    Burke K, Perdew J P, Ernzerhof M 1997 Int. J. Quantum Chem. 61 287Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kurth S, Perdew J P, Blaha P 2015 Int. J. Quantum Chem. 75 889

    [28]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [29]

    Paier J, Marsman M, Kresse G 2007 J. Chem. Phys. 127 024103Google Scholar

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [31]

    De Raedt H, Hams A H, Michielsen K, Miyashita S, Saito E 2000 Prog. Theor. Phys. Suppl. 138 489Google Scholar

    [32]

    Zurek E 2016 Reviews in Computational Chemistry (Hoboken: Wiley-Blackwell) pp274−326

    [33]

    Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar

    [34]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [35]

    Ozolins V, Majzoub E H, Wolverton C 2009 J. Am. Chem. Soc. 131 230Google Scholar

    [36]

    Ortiz C, Eriksson O, Klintenberg M 2009 Comput. Mater. Sci. 44 1042Google Scholar

    [37]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

    [38]

    Yu L P, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [39]

    Choudhary K, Kalish I, Beams R, Tavazza F 2017 Sci. Rep 7 5179Google Scholar

    [40]

    Jiang Y C, Gao J, Wang L 2016 Sci. Rep 6 19624Google Scholar

    [41]

    Augustin J, Eyert V, Boker T, Frentrup W, Dwelk H, Janowitz C, Manzke R 2000 Phys. Rev. B 62 10812Google Scholar

    [42]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [43]

    Haastrup S, Strange M, Pandey M, et al. 2018 2D Mater. 5 042002

    [44]

    Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar

    [45]

    Zhou J, Shen L, Costa M D, Persson K A, Ong S P, Huck P, Lu Y H, Ma X Y, Chen Y M, Tang H M, Feng Y P 2019 Sci. Data 6 86Google Scholar

    [46]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 4193

    [47]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [48]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [49]

    Wu X, Shao Y, Liu H, et al. 2017 Adv. Mater. 29 1605407Google Scholar

    [50]

    Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar

    [51]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [52]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [53]

    Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F 2018 Nat. Nanotechnol. 13 994Google Scholar

    [54]

    Nakamura S, Senoh M, Iwasa N, Nagahama S I 1995 Jpn. J. Appl. Phys. 34 L797Google Scholar

    [55]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [56]

    Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M 2016 Nat. Commun. 7 12512Google Scholar

    [57]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar

    [58]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar

    [59]

    Merkl P, Mooshammer F, Steinleitner P, Girnghuber A, Lin K Q, Nagler P, Holler J, Schueller C, Lupton J M, Korn T 2019 Nat. Mater. 18 691Google Scholar

    [60]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2014 ACS Nano 8 12717Google Scholar

    [61]

    Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [62]

    Gong Y J, Lin J H, Wang X L, et al. 2014 Nat. Mater. 13 1135Google Scholar

    [63]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y 2015 Nano Lett. 15 486Google Scholar

    [64]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [65]

    Yuan J T, Najmaei S, Zhang Z H, Zhang J, Lei S D, Ajayan P M, Yakobson B I, Lou J 2015 ACS Nano 9 555Google Scholar

    [66]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6198Google Scholar

    [67]

    Chiu M H, Li M Y, Zhang W, Hsu W T, Chang W H, Terrones M, Terrones H, Li L J 2014 ACS Nano 8 9649Google Scholar

    [68]

    Roy T, Tosun M, Cao X, Fang H, Javey A 2015 ACS Nano 9 2071Google Scholar

    [69]

    Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C, Javey A 2014 ACS Nano 8 6259Google Scholar

    [70]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [71]

    Furchi M M, Pospischil A, Libisch F, Burgdorfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [72]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [73]

    Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242Google Scholar

    [74]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2015 Nanoscale 7 17523Google Scholar

    [75]

    Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar

    [76]

    Torun E, Miranda H P C, Molina-Sanchez A, Wirtz L 2018 Phys. Rev. B 97 245427Google Scholar

    [77]

    Gillen R, Maultzsch J 2018 Phys. Rev. B 97 165306Google Scholar

  • 图 1  截止到2020年9月以“Two-dimensional materials”为关键词, 从Web of Science网站查询到的近十年的论文发表数

    Figure 1.  Number of publications on two-dimensional materials per year over the last decade. The data is from ISI Web of Science website by September 2020, and the searching keyword is “two-dimensional materials”.

    图 2  凸包图, 用于判断材料稳态和亚稳态[32]

    Figure 2.  Convex hull diagram is used to estimate the ground state and metastable state of a material[32].

    图 3  预测的层状材料结构、成分等信息统计 (a) 晶格常数的相对误差; (b) 化学元素组成; (c) 晶体类型; (d) 晶体空间群; (e) 晶系; (f) 元素种类[39]

    Figure 3.  Classification of predicted layered materials in term of (a) relative error in lattice constants; (b) chemical compositions; (c) crystal prototypes; (d) crystal space groups; (e) crystal systems; (f) number of distinct chemical constituents[39].

    图 4  C2DB数据库中典型的二维材料[43]

    Figure 4.  Example of two dimensional materials prototypes in the C2DB[43].

    图 5  C2DB数据库的工作流程图[43]

    Figure 5.  The workflow of producing data of C2DB[43].

    图 6  体相砷的 (a) 俯视图和(b) 顶视图; 翘曲单层砷烯的(c) 俯视图和(d) 侧视图[48]

    Figure 6.  (a) Side view and (b) top view of the structure of arsenic; (c) top view and (d) side view of a buckled As monolayer (arsenene)[48].

    图 7  层砷烯和层锑烯的声子谱图[48]

    Figure 7.  Phonon dispersions of arsenene and antimonene[48].

    图 8  Cu(111)上单层CuSe的(a) 高分辨率STM图像, (b) LEED图; Cu(111)上单层CuSe优化原子结构模型的(c) 俯视图, (d) 侧视图[51]

    Figure 8.  Monolayer CuSe on Cu(111): (a) High-resolution STM image, (b) LEED pattern; optimized atomic structure of monolayer CuSe on Cu(111): (c) top view, (d) side view[51].

    图 9  Cu(111)上单层CuSe (a) 沿KΓK方向测量的ARPES图; (b) 理论计算的能带图[51]

    Figure 9.  Monolayer CuSe on Cu(111): (a) ARPES intensity plots measured along the KΓK direction; (b) calculated band structure [51]

    图 10  电荷转移示意图 (a), (b) I型异型结; (c), (d) II型异型结[53]

    Figure 10.  Schematic of allowed charge transfer: (a), (b) Type-I heterostructures; (c), (d) type-II heterostructures[53].

    图 11  异质结周期表[55]

    Figure 11.  Periodic table of heterostructures[55].

    图 12  (a) MoS2, WS2和MoS2/WS2的吸收光谱图; (b) 布里渊区K点附近的电子能带; (c) 异质结的能带排列[76]

    Figure 12.  (a) Absorption spectra of MoS2, WS2 and MoS2/WS2; (b) electron band near the K point in the Brillouin zone; (c) band arrangement of heterostructures[76].

    图 13  AA, AA', AB型MoSe2/WSe2异质结的结构及能带[77]

    Figure 13.  Structure and energy band of AA, AA', AB MoSe2/WSe2 heterostructures[77].

    表 1  数据库统计[42]

    Table 1.  Database statistics[42].

    Unique to the ICSDUnique to the COD Common to bothTotal sum
    Experimental data
    CIF inputs9921287070186282
    Unique 3D structures (set A)345486035413521108423
    Layered 3D structures (set B)3257118011825619
    DFT calculations
    Layered 3D, relaxed (set C)21651758703210
    Binding
    energies (set D)
    17951267412662
    2D easily
    exfoliable (EE)
    663792941036
    2D potentially exfoliable (PE)52434231789
    Total11871135251825
    DownLoad: CSV

    表 2  易剥落的磁性化合物[42]

    Table 2.  Easily exfoliable magnetic compounds[42].

    FerromagneticAntiferromagnetic
    MetalsCo(OH)2, CoO2, ErHCl, ErSeI, EuOBr, EuOI, FeBr2, FeI2,
    FeTe, LaCl, NdOBr, PrOBr, ScCl, SmOBr, SmSI, TbBr,
    TmI2, TmOI, VS2, VSe2, VTe2, YCl, YbOBr, YbOCl
    CoI2, CrSe2, FeO2, FeOCl, FeSe, PrOI, VOBr
    SemiconductorsCdOCl, CoBr2, CoCl2, CrOBr, CrOCl, CrSBr, CuCl2,
    ErSCl, HoSI, LaBr2, NiBr2, NiCl2, NiI2
    CrBr2, CrI2, LaBr, Mn(OH)2, MnBr2, MnCl2,
    MnI2, VBr2, VCl2, VI2, VOBr2, VOCl2
    DownLoad: CSV
    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Shim J, Bae S H, Kong W, et al. 2018 Science 362 665Google Scholar

    [4]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [5]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [6]

    Coy-Diaz H, Bertran F O, Avila C C, Rault J, Le F V 2000 Phys. Status Solidi RRL 9 701

    [7]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar

    [8]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [9]

    Gao N, Li J C, Jiang Q 2014 Chem. Phys. Lett. 592 222Google Scholar

    [10]

    Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibérian J P 2012 J. Phys. Condens. Matter 24 172001Google Scholar

    [11]

    Qin R, Wang C H, Zhu W J, Zhang Y L 2012 AIP Adv. 2 022159Google Scholar

    [12]

    Amlaki T, Bokdam M, Kelly P J 2016 Phys. Rev. Lett. 116 256805Google Scholar

    [13]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, Zandvliet H J W 2016 Phys. Rev. Lett. 117 256804

    [14]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [15]

    Saxena S, Chaudhary R P, Shukla S 2016 Sci. Rep. 6 31073Google Scholar

    [16]

    Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang D K, Im S 2015 ACS Nano 9 10394Google Scholar

    [17]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H B, Wang S Y 2017 Small 13 1700758Google Scholar

    [18]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [19]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [20]

    Lei J C, Zhang X, Zhou Z 2015 Front. Phys. 10 276Google Scholar

    [21]

    Chen J Y, Huang Q, Huang H Y, Mao L C, Liu M Y, Zhang X Y, Wei Y 2020 Nanoscale 12 3574Google Scholar

    [22]

    Glavin N R, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan P M 2020 Adv. Mater. 32 1904302Google Scholar

    [23]

    Kohn W, Sham L J 1965 Phys. Rev 140 1133Google Scholar

    [24]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [25]

    Burke K, Perdew J P, Ernzerhof M 1997 Int. J. Quantum Chem. 61 287Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kurth S, Perdew J P, Blaha P 2015 Int. J. Quantum Chem. 75 889

    [28]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [29]

    Paier J, Marsman M, Kresse G 2007 J. Chem. Phys. 127 024103Google Scholar

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [31]

    De Raedt H, Hams A H, Michielsen K, Miyashita S, Saito E 2000 Prog. Theor. Phys. Suppl. 138 489Google Scholar

    [32]

    Zurek E 2016 Reviews in Computational Chemistry (Hoboken: Wiley-Blackwell) pp274−326

    [33]

    Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar

    [34]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [35]

    Ozolins V, Majzoub E H, Wolverton C 2009 J. Am. Chem. Soc. 131 230Google Scholar

    [36]

    Ortiz C, Eriksson O, Klintenberg M 2009 Comput. Mater. Sci. 44 1042Google Scholar

    [37]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

    [38]

    Yu L P, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [39]

    Choudhary K, Kalish I, Beams R, Tavazza F 2017 Sci. Rep 7 5179Google Scholar

    [40]

    Jiang Y C, Gao J, Wang L 2016 Sci. Rep 6 19624Google Scholar

    [41]

    Augustin J, Eyert V, Boker T, Frentrup W, Dwelk H, Janowitz C, Manzke R 2000 Phys. Rev. B 62 10812Google Scholar

    [42]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [43]

    Haastrup S, Strange M, Pandey M, et al. 2018 2D Mater. 5 042002

    [44]

    Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar

    [45]

    Zhou J, Shen L, Costa M D, Persson K A, Ong S P, Huck P, Lu Y H, Ma X Y, Chen Y M, Tang H M, Feng Y P 2019 Sci. Data 6 86Google Scholar

    [46]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 4193

    [47]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [48]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [49]

    Wu X, Shao Y, Liu H, et al. 2017 Adv. Mater. 29 1605407Google Scholar

    [50]

    Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar

    [51]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [52]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [53]

    Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F 2018 Nat. Nanotechnol. 13 994Google Scholar

    [54]

    Nakamura S, Senoh M, Iwasa N, Nagahama S I 1995 Jpn. J. Appl. Phys. 34 L797Google Scholar

    [55]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [56]

    Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M 2016 Nat. Commun. 7 12512Google Scholar

    [57]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar

    [58]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar

    [59]

    Merkl P, Mooshammer F, Steinleitner P, Girnghuber A, Lin K Q, Nagler P, Holler J, Schueller C, Lupton J M, Korn T 2019 Nat. Mater. 18 691Google Scholar

    [60]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2014 ACS Nano 8 12717Google Scholar

    [61]

    Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [62]

    Gong Y J, Lin J H, Wang X L, et al. 2014 Nat. Mater. 13 1135Google Scholar

    [63]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y 2015 Nano Lett. 15 486Google Scholar

    [64]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [65]

    Yuan J T, Najmaei S, Zhang Z H, Zhang J, Lei S D, Ajayan P M, Yakobson B I, Lou J 2015 ACS Nano 9 555Google Scholar

    [66]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6198Google Scholar

    [67]

    Chiu M H, Li M Y, Zhang W, Hsu W T, Chang W H, Terrones M, Terrones H, Li L J 2014 ACS Nano 8 9649Google Scholar

    [68]

    Roy T, Tosun M, Cao X, Fang H, Javey A 2015 ACS Nano 9 2071Google Scholar

    [69]

    Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C, Javey A 2014 ACS Nano 8 6259Google Scholar

    [70]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [71]

    Furchi M M, Pospischil A, Libisch F, Burgdorfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [72]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [73]

    Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242Google Scholar

    [74]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2015 Nanoscale 7 17523Google Scholar

    [75]

    Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar

    [76]

    Torun E, Miranda H P C, Molina-Sanchez A, Wirtz L 2018 Phys. Rev. B 97 245427Google Scholar

    [77]

    Gillen R, Maultzsch J 2018 Phys. Rev. B 97 165306Google Scholar

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan. Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries. Acta Physica Sinica, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [3] Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping. First-principles calculations of carrier mobility in monolayer IrSCl and IrSI. Acta Physica Sinica, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [4] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [5] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [6] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [7] Liu Tian-Yao, Liu Can, Liu Kai-Hui. Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation. Acta Physica Sinica, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [8] Chen Si-Yu, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical research of two-dimensional germanether in sodium-ion battery. Acta Physica Sinica, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [9] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [10] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [11] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [12] Chen Xu-Fan, Yang Qiang, Hu Xiao-Hui. Tunable electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer. Acta Physica Sinica, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [13] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [14] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [15] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [16] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [17] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [18] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [19] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [20] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
Metrics
  • Abstract views:  14350
  • PDF Downloads:  749
  • Cited By: 0
Publishing process
  • Received Date:  03 October 2020
  • Accepted Date:  02 November 2020
  • Available Online:  14 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回
Baidu
map