搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属原子掺杂对二维CrBr3电磁学性能的调控

陈旭凡 杨强 胡小会

引用本文:
Citation:

过渡金属原子掺杂对二维CrBr3电磁学性能的调控

陈旭凡, 杨强, 胡小会

Tunable electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer

Chen Xu-Fan, Yang Qiang, Hu Xiao-Hui
PDF
HTML
导出引用
  • 近年来, 二维铁磁材料由于其在自旋电子学领域中十分广阔的应用前景受到广泛关注. 单层CrBr3是具有本征铁磁性的半导体, 是自旋电子器件的潜在候选材料. 然而, 单层CrBr3的居里温度较低, 限制了其在自旋电子器件领域的应用. 本文基于密度泛函理论, 研究了3d过渡金属(TM)原子 (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu和Zn)掺杂单层CrBr3的磁学和电学性能. 计算结果表明, TM原子掺杂后, 体系总磁矩呈现先增加再减小的趋势. 并且TM原子掺杂能够显著提高单层CrBr3的居里温度(TC), 实现了铁磁稳定性的增强. 其中, Sc掺杂CrBr3体系的TC与本征CrBr3相比提高了159%. 铁磁稳定性的增强归因于掺杂体系 (TM-CrBr3) 中直接交换和超交换相互作用之间的竞争. 此外, 依赖于不同的TM原子掺杂, TM-CrBr3体系表现出半金属性和自旋零带隙半导体性质. 本文的研究结果为单层CrBr3在纳米电子和自旋电子器件中的应用开辟了新的前景.
    The CrBr3 monolayer is a two-dimensional semiconductor material with intrinsic ferromagnetism. However, the low Curie temperature of CrBr3 monolayer limits its practical development in innovative spintronic devices. The electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer have been systematically investigated by using the density functional theory calculations. The formation energy elucidates that all 3d transition metal (TM) atoms prefer to be doped in the middle of a hexagon (H) site of CrBr3 monolayer. And all the TM atoms, except the Zn atom, can bond strongly to the surrounding Cr atoms with sizable formation energy. The results also indicate that the magnetic moment of TM-CrBr3 system changes as a result of the charge transfer between TM atom and adjacent Cr atom. In addition, comparing with the intrinsic CrBr3, the TC of TM-CrBr3 system increases significantly, which means that the ferromagnetic stability of CrBr3 monolayer is enhanced. In particular, the TC of CrBr3 with Sc atom can be increased by 159%. The enhancement of ferromagnetism is mainly due to the competition between the direct exchange and the superexchange interaction. We also find that the electronic properties of the TM-CrBr3 systems are diverse. For example, Sc-, Ti-, V-, Mn-, Fe-, Co-, Ni-, Cu- and Zn-CrBr3 exhibit spin gapless semiconductor (SGS) properties with 100% spin polarization at Fermi level. The TM-CrBr3 system can be adjusted from semiconductor to half-metal when Cr atoms are doped into the CrBr3 monolayer. This work, together with recent achievements in the field of two-dimensional ferromagnetic materials, provides an experimentally achievable guide for realizing the preparation of TM-CrBr3 system with high Curie temperature. Moreover, the possibility of application of these systems in nanoelectronics and spintronics is increased.
      通信作者: 胡小会, xiaohui.hu@njtech.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604047)、江苏省自然科学基金(批准号: BK20160694)、江苏省博士后科研资助计划(批准号: 2019K010A)和江苏高校优势学科建设工程(PAPD)资助的课题
      Corresponding author: Hu Xiao-Hui, xiaohui.hu@njtech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604047), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160694), the Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 2019K010A), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China
    [1]

    Hu X H, Björkman T, Lipsanen H, Sun L T, Krasheninnikov A V 2015 J. Phys. Chem. Lett. 6 3263Google Scholar

    [2]

    Hu X H, Wang Y F, Shen X D, Krasheninnikov A V, Sun L T, Chen Z F 2018 2D Mater. 5 031012Google Scholar

    [3]

    Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [4]

    Kou L Z, Ma Y D, Sun Z Q, Heine T, Chen C F 2017 J. Phys. Chem. Lett. 8 1905Google Scholar

    [5]

    Hu X H, Zhao Y H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2020 ACS Appl. Mater. Interfaces 12 26367Google Scholar

    [6]

    Ai W, Kou L Z, Hu X H, Wang Y F, Krasheninnikov A V, Sun L T, Shen X D 2019 J. Phys. Condens. Matter 31 445301Google Scholar

    [7]

    Hu X H, Wan N, Sun L T, Krasheninnikov A V 2014 J. Phys. Chem. C 118 16133Google Scholar

    [8]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar

    [9]

    艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 68 197101Google Scholar

    Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101Google Scholar

    [10]

    Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115Google Scholar

    [11]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. -Int. Ed. 54 3112Google Scholar

    [12]

    Chen X P, Yang Q, Meng R S, Jiang J K, Liang Q H, Tan C J, Sun X 2016 J. Mater. Chem. C 4 5434Google Scholar

    [13]

    Yang Q, Kou L Z, Hu X H, Wang Y F, Lu C H, Krasheninnikov A V, Sun L T 2020 J. Phys. Condens. Matter 32 365302Google Scholar

    [14]

    Karthikeyan J, Komsa H P, Batzill M, Krasheninnikov A V 2019 Nano Lett. 19 4581Google Scholar

    [15]

    Yang Q, Hu X H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2021 ACS Appl. Mater. Interfaces 13 21593Google Scholar

    [16]

    Wang J X, Kou L Z, Ni Y R, Hu X H 2021 J. Phys. Condens. Matter 33 235502Google Scholar

    [17]

    Kou L, Tang C, Guo W, Chen C 2011 ACS Nano 5 1012Google Scholar

    [18]

    Liu L F, Kou L Z, Wang Y F, Lu C H, Hu X H 2020 Nanotechnology 31 455702Google Scholar

    [19]

    Tao P, Guo H H, Zhang Z D, Yang T 2014 J. Appl. Phys. 115 054305Google Scholar

    [20]

    Jiang C H, Zhou R Q, Peng Z H, Zhu J F, Chen Q 2016 Phys. Chem. Chem. Phys. 18 32528Google Scholar

    [21]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [22]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [23]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [24]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [25]

    Tang C L, Zhang Z W, Lai S, Tan Q H, Gao W B 2020 Adv. Mater. 32 1908498Google Scholar

    [26]

    Lyons T P, Gillard D, Molina-Sanchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernandez-Rossier J, Tartakovskii A I 2020 Nat. Commun. 11 6021Google Scholar

    [27]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [28]

    Cheng Y C, Zhu Z Y, Mi W B, Guo Z B, Schwingenschlogl U 2013 Phys. Rev. 87 100401Google Scholar

    [29]

    Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958Google Scholar

    [30]

    Peng Y T, Wei S Y, Xia C X, Jia Y 2013 Mod. Phys. Lett. B 27 1350204Google Scholar

    [31]

    Song C S, Xiao W, Li L, Lu Y, Jiang P, Li C, Chen A X, Zhong Z C 2019 Phys. Rev. B 99 214435Google Scholar

    [32]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [33]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [35]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [37]

    Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [38]

    Tang C, Zhang L, Du A J 2020 J. Mater. Chem. C 8 14948Google Scholar

    [39]

    Bacaksiz C, Sabani D, Menezes R M, Milosevic M V 2021 Phys. Rev. B 103 125418Google Scholar

    [40]

    Zhang H, Yang W, Ning Y, Xu X H 2020 Nanoscale 12 13964Google Scholar

    [41]

    隋雪蕾 2017 博士学位论文 (北京: 清华大学)

    Sui X L 2017 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [42]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [43]

    Sui X L, Si C, Shao B, Zou X L, Wu J, Gu B L, Duan W H 2015 J. Phys. Chem. C 119 10059Google Scholar

    [44]

    Tiwari S, Van-de-Put M L, Soree B, Vandenberghe W G 2021 Phys. Rev. B 103 014432Google Scholar

    [45]

    Goodenough J B 1955 Phys. Rev. 100 564Google Scholar

    [46]

    Kanamori J 1960 J. Appl. Phys. 31 S14Google Scholar

    [47]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

    [48]

    Wang X L 2008 Phys. Rev. Lett. 100 156404Google Scholar

  • 图 1  (a) 单层CrBr3的结构示意图; (b) 单层CrBr3的能带结构和态密度. 能带结构中自旋向上和自旋向下分别用红色实线和蓝色实线表示

    Fig. 1.  (a) Structural diagram of CrBr3 monolayer; (b) band structure and density of states of CrBr3 monolayer. The red and blue solid lines indicate spin-up and spin-down channels in the band structures, respectively.

    图 2  (a)−(c) TM原子分别掺杂在H, Cr-Top和Br-Top位点时TM-CrBr3晶体结构的俯视图和侧视图; (d) TM-CrBr3的形成能; (e) 在H构型中, TM原子到CrBr3表层Br原子的高度以及TM原子与最邻近Br原子共价键的键长

    Fig. 2.  Top and side views of the crystalline structure of three different doped positions of TM atoms labeled as (a) H, (b) Cr-Top and (c) Br-Top; (d) the formation energy of TM-CrBr3; (e) the height of the TM to Br on the surface of CrBr3 and the length of covalent bond between TM and nearest Br atom.

    图 3  在300 K下, TM-CrBr3掺杂体系的H构型在5 ps后分子动力学模拟的结构示意图

    Fig. 3.  Snapshots of TM-CrBr3 on the H site taken after 5 ps of DFT-MD simulations at 300 K.

    图 4  (a) H构型的TM-CrBr3中TM原子的磁矩以及与TM原子最近邻的Cr原子的磁矩; (b) TM-CrBr3中Cr和TM原子的电荷转移; (c) TM-CrBr3体系的总磁矩(Mtotal)

    Fig. 4.  (a) Magnetic moments of TM atom and Cr atom nearest to TM atom in TM-CrBr3 of H configuration; (b) charge transfer between Cr and TM atoms in TM-CrBr3; (c) the total magnetic moments (Mtotal) of TM-CrBr3.

    图 5  (a) 本征CrBr3和TM-CrBr3体系的AFM构型与FM构型的能量差EAFMEFM和居里温度TC; (b) 本征CrBr3和TM-CrBr3的Cr—Cr距离和Cr—I—Cr键角

    Fig. 5.  (a) The EAFMEFM and Curie temperature of pristine CrBr3 and TM-CrBr3; (b) the Cr—Cr distance and Cr—I—Cr bond angle in pristine CrBr3 and TM-CrBr3.

    图 6  3d TM原子掺杂单层CrBr3的自旋极化能带结构, 插图是费米能级附近能带结构的放大图. 自旋向上和自旋向下分别用红色实线和蓝色实线表示

    Fig. 6.  Spin-polarized band structures of 3d TM atoms doped CrBr3 monolayer. The illustration is an enlarged picture of the band structures near the Fermi level. The red and blue solid lines indicate spin-up and spin-down channels in the band structures, respectively.

    表 1  本征CrBr3和TM-CrBr3体系中的交换耦合参数 (J )

    Table 1.  Exchange coupling parameter (J ) of pristine CrBr3 and TM-CrBr3.

    CrBr3ScTiVCrMnFeCoNiCuZn
    J/meV2.395.953.955.102.663.962.801.252.973.274.73
    下载: 导出CSV
    Baidu
  • [1]

    Hu X H, Björkman T, Lipsanen H, Sun L T, Krasheninnikov A V 2015 J. Phys. Chem. Lett. 6 3263Google Scholar

    [2]

    Hu X H, Wang Y F, Shen X D, Krasheninnikov A V, Sun L T, Chen Z F 2018 2D Mater. 5 031012Google Scholar

    [3]

    Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [4]

    Kou L Z, Ma Y D, Sun Z Q, Heine T, Chen C F 2017 J. Phys. Chem. Lett. 8 1905Google Scholar

    [5]

    Hu X H, Zhao Y H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2020 ACS Appl. Mater. Interfaces 12 26367Google Scholar

    [6]

    Ai W, Kou L Z, Hu X H, Wang Y F, Krasheninnikov A V, Sun L T, Shen X D 2019 J. Phys. Condens. Matter 31 445301Google Scholar

    [7]

    Hu X H, Wan N, Sun L T, Krasheninnikov A V 2014 J. Phys. Chem. C 118 16133Google Scholar

    [8]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar

    [9]

    艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 68 197101Google Scholar

    Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101Google Scholar

    [10]

    Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115Google Scholar

    [11]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. -Int. Ed. 54 3112Google Scholar

    [12]

    Chen X P, Yang Q, Meng R S, Jiang J K, Liang Q H, Tan C J, Sun X 2016 J. Mater. Chem. C 4 5434Google Scholar

    [13]

    Yang Q, Kou L Z, Hu X H, Wang Y F, Lu C H, Krasheninnikov A V, Sun L T 2020 J. Phys. Condens. Matter 32 365302Google Scholar

    [14]

    Karthikeyan J, Komsa H P, Batzill M, Krasheninnikov A V 2019 Nano Lett. 19 4581Google Scholar

    [15]

    Yang Q, Hu X H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2021 ACS Appl. Mater. Interfaces 13 21593Google Scholar

    [16]

    Wang J X, Kou L Z, Ni Y R, Hu X H 2021 J. Phys. Condens. Matter 33 235502Google Scholar

    [17]

    Kou L, Tang C, Guo W, Chen C 2011 ACS Nano 5 1012Google Scholar

    [18]

    Liu L F, Kou L Z, Wang Y F, Lu C H, Hu X H 2020 Nanotechnology 31 455702Google Scholar

    [19]

    Tao P, Guo H H, Zhang Z D, Yang T 2014 J. Appl. Phys. 115 054305Google Scholar

    [20]

    Jiang C H, Zhou R Q, Peng Z H, Zhu J F, Chen Q 2016 Phys. Chem. Chem. Phys. 18 32528Google Scholar

    [21]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [22]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [23]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [24]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [25]

    Tang C L, Zhang Z W, Lai S, Tan Q H, Gao W B 2020 Adv. Mater. 32 1908498Google Scholar

    [26]

    Lyons T P, Gillard D, Molina-Sanchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernandez-Rossier J, Tartakovskii A I 2020 Nat. Commun. 11 6021Google Scholar

    [27]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [28]

    Cheng Y C, Zhu Z Y, Mi W B, Guo Z B, Schwingenschlogl U 2013 Phys. Rev. 87 100401Google Scholar

    [29]

    Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958Google Scholar

    [30]

    Peng Y T, Wei S Y, Xia C X, Jia Y 2013 Mod. Phys. Lett. B 27 1350204Google Scholar

    [31]

    Song C S, Xiao W, Li L, Lu Y, Jiang P, Li C, Chen A X, Zhong Z C 2019 Phys. Rev. B 99 214435Google Scholar

    [32]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [33]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [35]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [37]

    Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [38]

    Tang C, Zhang L, Du A J 2020 J. Mater. Chem. C 8 14948Google Scholar

    [39]

    Bacaksiz C, Sabani D, Menezes R M, Milosevic M V 2021 Phys. Rev. B 103 125418Google Scholar

    [40]

    Zhang H, Yang W, Ning Y, Xu X H 2020 Nanoscale 12 13964Google Scholar

    [41]

    隋雪蕾 2017 博士学位论文 (北京: 清华大学)

    Sui X L 2017 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [42]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [43]

    Sui X L, Si C, Shao B, Zou X L, Wu J, Gu B L, Duan W H 2015 J. Phys. Chem. C 119 10059Google Scholar

    [44]

    Tiwari S, Van-de-Put M L, Soree B, Vandenberghe W G 2021 Phys. Rev. B 103 014432Google Scholar

    [45]

    Goodenough J B 1955 Phys. Rev. 100 564Google Scholar

    [46]

    Kanamori J 1960 J. Appl. Phys. 31 S14Google Scholar

    [47]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

    [48]

    Wang X L 2008 Phys. Rev. Lett. 100 156404Google Scholar

  • [1] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [2] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [3] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能.  , 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [4] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211048
    [5] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [6] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [7] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能.  , 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [8] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化.  , 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [9] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响.  , 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [10] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响.  , 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [11] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [12] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能.  , 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [13] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究.  , 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [14] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变.  , 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [15] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响.  , 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [16] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究.  , 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [17] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究.  , 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [18] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究.  , 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [19] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能.  , 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [20] 王林军, 刘健敏, 苏青峰, 史伟民, 夏义本. 金刚石膜α粒子探测器的电学性能研究.  , 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
计量
  • 文章访问数:  7007
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-07-09
  • 上网日期:  2021-09-07
  • 刊出日期:  2021-12-20

/

返回文章
返回
Baidu
map