-
The CrBr3 monolayer is a two-dimensional semiconductor material with intrinsic ferromagnetism. However, the low Curie temperature of CrBr3 monolayer limits its practical development in innovative spintronic devices. The electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer have been systematically investigated by using the density functional theory calculations. The formation energy elucidates that all 3d transition metal (TM) atoms prefer to be doped in the middle of a hexagon (H) site of CrBr3 monolayer. And all the TM atoms, except the Zn atom, can bond strongly to the surrounding Cr atoms with sizable formation energy. The results also indicate that the magnetic moment of TM-CrBr3 system changes as a result of the charge transfer between TM atom and adjacent Cr atom. In addition, comparing with the intrinsic CrBr3, the TC of TM-CrBr3 system increases significantly, which means that the ferromagnetic stability of CrBr3 monolayer is enhanced. In particular, the TC of CrBr3 with Sc atom can be increased by 159%. The enhancement of ferromagnetism is mainly due to the competition between the direct exchange and the superexchange interaction. We also find that the electronic properties of the TM-CrBr3 systems are diverse. For example, Sc-, Ti-, V-, Mn-, Fe-, Co-, Ni-, Cu- and Zn-CrBr3 exhibit spin gapless semiconductor (SGS) properties with 100% spin polarization at Fermi level. The TM-CrBr3 system can be adjusted from semiconductor to half-metal when Cr atoms are doped into the CrBr3 monolayer. This work, together with recent achievements in the field of two-dimensional ferromagnetic materials, provides an experimentally achievable guide for realizing the preparation of TM-CrBr3 system with high Curie temperature. Moreover, the possibility of application of these systems in nanoelectronics and spintronics is increased.
-
Keywords:
- two-dimensional materials /
- transition-metal doping /
- electrical properties /
- magnetic properties
[1] Hu X H, Björkman T, Lipsanen H, Sun L T, Krasheninnikov A V 2015 J. Phys. Chem. Lett. 6 3263
Google Scholar
[2] Hu X H, Wang Y F, Shen X D, Krasheninnikov A V, Sun L T, Chen Z F 2018 2D Mater. 5 031012
Google Scholar
[3] Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859
Google Scholar
[4] Kou L Z, Ma Y D, Sun Z Q, Heine T, Chen C F 2017 J. Phys. Chem. Lett. 8 1905
Google Scholar
[5] Hu X H, Zhao Y H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2020 ACS Appl. Mater. Interfaces 12 26367
Google Scholar
[6] Ai W, Kou L Z, Hu X H, Wang Y F, Krasheninnikov A V, Sun L T, Shen X D 2019 J. Phys. Condens. Matter 31 445301
Google Scholar
[7] Hu X H, Wan N, Sun L T, Krasheninnikov A V 2014 J. Phys. Chem. C 118 16133
Google Scholar
[8] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418
Google Scholar
[9] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 68 197101
Google Scholar
Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101
Google Scholar
[10] Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115
Google Scholar
[11] Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. -Int. Ed. 54 3112
Google Scholar
[12] Chen X P, Yang Q, Meng R S, Jiang J K, Liang Q H, Tan C J, Sun X 2016 J. Mater. Chem. C 4 5434
Google Scholar
[13] Yang Q, Kou L Z, Hu X H, Wang Y F, Lu C H, Krasheninnikov A V, Sun L T 2020 J. Phys. Condens. Matter 32 365302
Google Scholar
[14] Karthikeyan J, Komsa H P, Batzill M, Krasheninnikov A V 2019 Nano Lett. 19 4581
Google Scholar
[15] Yang Q, Hu X H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2021 ACS Appl. Mater. Interfaces 13 21593
Google Scholar
[16] Wang J X, Kou L Z, Ni Y R, Hu X H 2021 J. Phys. Condens. Matter 33 235502
Google Scholar
[17] Kou L, Tang C, Guo W, Chen C 2011 ACS Nano 5 1012
Google Scholar
[18] Liu L F, Kou L Z, Wang Y F, Lu C H, Hu X H 2020 Nanotechnology 31 455702
Google Scholar
[19] Tao P, Guo H H, Zhang Z D, Yang T 2014 J. Appl. Phys. 115 054305
Google Scholar
[20] Jiang C H, Zhou R Q, Peng Z H, Zhu J F, Chen Q 2016 Phys. Chem. Chem. Phys. 18 32528
Google Scholar
[21] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270
Google Scholar
[22] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
Google Scholar
[23] Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138
Google Scholar
[24] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983
Google Scholar
[25] Tang C L, Zhang Z W, Lai S, Tan Q H, Gao W B 2020 Adv. Mater. 32 1908498
Google Scholar
[26] Lyons T P, Gillard D, Molina-Sanchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernandez-Rossier J, Tartakovskii A I 2020 Nat. Commun. 11 6021
Google Scholar
[27] Webster L, Yan J A 2018 Phys. Rev. B 98 144411
Google Scholar
[28] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B, Schwingenschlogl U 2013 Phys. Rev. 87 100401
Google Scholar
[29] Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958
Google Scholar
[30] Peng Y T, Wei S Y, Xia C X, Jia Y 2013 Mod. Phys. Lett. B 27 1350204
Google Scholar
[31] Song C S, Xiao W, Li L, Lu Y, Jiang P, Li C, Chen A X, Zhong Z C 2019 Phys. Rev. B 99 214435
Google Scholar
[32] Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716
Google Scholar
[33] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
Google Scholar
[34] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[35] Blochl P E 1994 Phys. Rev. B 50 17953
Google Scholar
[36] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[37] Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987
Google Scholar
[38] Tang C, Zhang L, Du A J 2020 J. Mater. Chem. C 8 14948
Google Scholar
[39] Bacaksiz C, Sabani D, Menezes R M, Milosevic M V 2021 Phys. Rev. B 103 125418
Google Scholar
[40] Zhang H, Yang W, Ning Y, Xu X H 2020 Nanoscale 12 13964
Google Scholar
[41] 隋雪蕾 2017 博士学位论文 (北京: 清华大学)
Sui X L 2017 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[42] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807
Google Scholar
[43] Sui X L, Si C, Shao B, Zou X L, Wu J, Gu B L, Duan W H 2015 J. Phys. Chem. C 119 10059
Google Scholar
[44] Tiwari S, Van-de-Put M L, Soree B, Vandenberghe W G 2021 Phys. Rev. B 103 014432
Google Scholar
[45] Goodenough J B 1955 Phys. Rev. 100 564
Google Scholar
[46] Kanamori J 1960 J. Appl. Phys. 31 S14
Google Scholar
[47] Anderson P W 1959 Phys. Rev. 115 2
Google Scholar
[48] Wang X L 2008 Phys. Rev. Lett. 100 156404
Google Scholar
-
图 2 (a)−(c) TM原子分别掺杂在H, Cr-Top和Br-Top位点时TM-CrBr3晶体结构的俯视图和侧视图; (d) TM-CrBr3的形成能; (e) 在H构型中, TM原子到CrBr3表层Br原子的高度以及TM原子与最邻近Br原子共价键的键长
Figure 2. Top and side views of the crystalline structure of three different doped positions of TM atoms labeled as (a) H, (b) Cr-Top and (c) Br-Top; (d) the formation energy of TM-CrBr3; (e) the height of the TM to Br on the surface of CrBr3 and the length of covalent bond between TM and nearest Br atom.
图 4 (a) H构型的TM-CrBr3中TM原子的磁矩以及与TM原子最近邻的Cr原子的磁矩; (b) TM-CrBr3中Cr和TM原子的电荷转移; (c) TM-CrBr3体系的总磁矩(Mtotal)
Figure 4. (a) Magnetic moments of TM atom and Cr atom nearest to TM atom in TM-CrBr3 of H configuration; (b) charge transfer between Cr and TM atoms in TM-CrBr3; (c) the total magnetic moments (Mtotal) of TM-CrBr3.
图 6 3d TM原子掺杂单层CrBr3的自旋极化能带结构, 插图是费米能级附近能带结构的放大图. 自旋向上和自旋向下分别用红色实线和蓝色实线表示
Figure 6. Spin-polarized band structures of 3d TM atoms doped CrBr3 monolayer. The illustration is an enlarged picture of the band structures near the Fermi level. The red and blue solid lines indicate spin-up and spin-down channels in the band structures, respectively.
表 1 本征CrBr3和TM-CrBr3体系中的交换耦合参数 (J )
Table 1. Exchange coupling parameter (J ) of pristine CrBr3 and TM-CrBr3.
CrBr3 Sc Ti V Cr Mn Fe Co Ni Cu Zn J/meV 2.39 5.95 3.95 5.10 2.66 3.96 2.80 1.25 2.97 3.27 4.73 -
[1] Hu X H, Björkman T, Lipsanen H, Sun L T, Krasheninnikov A V 2015 J. Phys. Chem. Lett. 6 3263
Google Scholar
[2] Hu X H, Wang Y F, Shen X D, Krasheninnikov A V, Sun L T, Chen Z F 2018 2D Mater. 5 031012
Google Scholar
[3] Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859
Google Scholar
[4] Kou L Z, Ma Y D, Sun Z Q, Heine T, Chen C F 2017 J. Phys. Chem. Lett. 8 1905
Google Scholar
[5] Hu X H, Zhao Y H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2020 ACS Appl. Mater. Interfaces 12 26367
Google Scholar
[6] Ai W, Kou L Z, Hu X H, Wang Y F, Krasheninnikov A V, Sun L T, Shen X D 2019 J. Phys. Condens. Matter 31 445301
Google Scholar
[7] Hu X H, Wan N, Sun L T, Krasheninnikov A V 2014 J. Phys. Chem. C 118 16133
Google Scholar
[8] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418
Google Scholar
[9] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 68 197101
Google Scholar
Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101
Google Scholar
[10] Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115
Google Scholar
[11] Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. -Int. Ed. 54 3112
Google Scholar
[12] Chen X P, Yang Q, Meng R S, Jiang J K, Liang Q H, Tan C J, Sun X 2016 J. Mater. Chem. C 4 5434
Google Scholar
[13] Yang Q, Kou L Z, Hu X H, Wang Y F, Lu C H, Krasheninnikov A V, Sun L T 2020 J. Phys. Condens. Matter 32 365302
Google Scholar
[14] Karthikeyan J, Komsa H P, Batzill M, Krasheninnikov A V 2019 Nano Lett. 19 4581
Google Scholar
[15] Yang Q, Hu X H, Shen X D, Krasheninnikov A V, Chen Z F, Sun L T 2021 ACS Appl. Mater. Interfaces 13 21593
Google Scholar
[16] Wang J X, Kou L Z, Ni Y R, Hu X H 2021 J. Phys. Condens. Matter 33 235502
Google Scholar
[17] Kou L, Tang C, Guo W, Chen C 2011 ACS Nano 5 1012
Google Scholar
[18] Liu L F, Kou L Z, Wang Y F, Lu C H, Hu X H 2020 Nanotechnology 31 455702
Google Scholar
[19] Tao P, Guo H H, Zhang Z D, Yang T 2014 J. Appl. Phys. 115 054305
Google Scholar
[20] Jiang C H, Zhou R Q, Peng Z H, Zhu J F, Chen Q 2016 Phys. Chem. Chem. Phys. 18 32528
Google Scholar
[21] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270
Google Scholar
[22] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
Google Scholar
[23] Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138
Google Scholar
[24] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983
Google Scholar
[25] Tang C L, Zhang Z W, Lai S, Tan Q H, Gao W B 2020 Adv. Mater. 32 1908498
Google Scholar
[26] Lyons T P, Gillard D, Molina-Sanchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernandez-Rossier J, Tartakovskii A I 2020 Nat. Commun. 11 6021
Google Scholar
[27] Webster L, Yan J A 2018 Phys. Rev. B 98 144411
Google Scholar
[28] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B, Schwingenschlogl U 2013 Phys. Rev. 87 100401
Google Scholar
[29] Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958
Google Scholar
[30] Peng Y T, Wei S Y, Xia C X, Jia Y 2013 Mod. Phys. Lett. B 27 1350204
Google Scholar
[31] Song C S, Xiao W, Li L, Lu Y, Jiang P, Li C, Chen A X, Zhong Z C 2019 Phys. Rev. B 99 214435
Google Scholar
[32] Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716
Google Scholar
[33] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
Google Scholar
[34] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[35] Blochl P E 1994 Phys. Rev. B 50 17953
Google Scholar
[36] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[37] Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987
Google Scholar
[38] Tang C, Zhang L, Du A J 2020 J. Mater. Chem. C 8 14948
Google Scholar
[39] Bacaksiz C, Sabani D, Menezes R M, Milosevic M V 2021 Phys. Rev. B 103 125418
Google Scholar
[40] Zhang H, Yang W, Ning Y, Xu X H 2020 Nanoscale 12 13964
Google Scholar
[41] 隋雪蕾 2017 博士学位论文 (北京: 清华大学)
Sui X L 2017 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[42] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807
Google Scholar
[43] Sui X L, Si C, Shao B, Zou X L, Wu J, Gu B L, Duan W H 2015 J. Phys. Chem. C 119 10059
Google Scholar
[44] Tiwari S, Van-de-Put M L, Soree B, Vandenberghe W G 2021 Phys. Rev. B 103 014432
Google Scholar
[45] Goodenough J B 1955 Phys. Rev. 100 564
Google Scholar
[46] Kanamori J 1960 J. Appl. Phys. 31 S14
Google Scholar
[47] Anderson P W 1959 Phys. Rev. 115 2
Google Scholar
[48] Wang X L 2008 Phys. Rev. Lett. 100 156404
Google Scholar
Catalog
Metrics
- Abstract views: 7822
- PDF Downloads: 273
- Cited By: 0