Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Valley manipulation in WSeTe/CrI3 van der Waals Heterostructures: A first-principles study

LIAO Yumin CHEN Xumin XU Huanglei YI Shuisheng WANG Hui HUO Dexuan

Citation:

Valley manipulation in WSeTe/CrI3 van der Waals Heterostructures: A first-principles study

LIAO Yumin, CHEN Xumin, XU Huanglei, YI Shuisheng, WANG Hui, HUO Dexuan
cstr: 32037.14.aps.74.20241750
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The valley degree of freedom, besides charge and spin, can be used to process information and perform logic operations as well, with the advantage of low power consumption and high speed. The effective manipulation of valley degrees of freedom is essential for their practical applications in valleytronics and spintronics. In this work, the effective strategy is investigated for the valley manipulation of the WSeTe/CrI3 van der Waals heterojunction with about 2% lattice mismatch by the first-principles calculations. The valley degree of freedom in WSeTe can be modulated by the magnetism of Cr atoms in the substrate via the magnetic proximity effect, including the vertical strain method and the rotation of the magnetic moments of Cr atoms. First-principles calculations are performed by using the VASP software package with the generalized gradient approximation functional in PerdewBurke-Ernzerhof (PBE) form. The spin-orbit coupling is considered when calculating the band structure to investigate the valley properties. The dependence of valley polarization on both vertical strain and the substrate’s magnetic moment direction has been systematically analyzed. There are two different stacking configurations for the WSeTe/CrI3 heterojunction with Te/Se atoms at the interface, namely Te-stacking and Se-stacking. Although single-layer WSeTe does not have valley polarization, the Te-stacked and Se-stacked WSeTe/CrI3 heterojunctions exhibit valley polarizations of 25 meV and 2 meV, respectively, which is influenced by spin-orbit coupling and the proximity effect of the magnetic substrate CrI3, indicating the importance of the stack configuration. The Te-stacked configuration of the heterojunction has a larger valley polarization due to stronger orbital hybridization between W atoms in WSeTe layer and Cr atoms in CrI3 layer. The application of vertical strain, which effectively tunes the interlayer distance, significantly regulates the valley polarization. Specifically, the valley polarization is increased to 59 meV when the interlayer distance decreases by 0.5 Å, while it decreases to 10 meV when the interlayer distance increases by 0.5 Å. Additionally, when the magnetic moment of the CrI3 substrate rotates by 360°, the valley polarization changes between –25 meV and 25 meV. It reaches a maximum value when the magnetic moment is aligned along the out-of-plane direction. This study demonstrates that the valley degree of freedom in the WSeTe/CrI3 van der Waals heterojunction can be effectively manipulated by adjusting the interlayer distance through vertical strain and by controlling the magnetic moment direction of the substrate. These findings provide valuable insights into the design and application of valleytronic and spintronic devices based on two-dimensional van der Waals heterostructures.
      Corresponding author: CHEN Xumin, 41790@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874011).
    [1]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [2]

    Rycerz A, Tworzydło J, Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [3]

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302 [孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 70 027302]Google Scholar

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302Google Scholar

    [4]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [5]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [6]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [7]

    MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J, Ralph D C 2015 Phys. Rev. Lett. 114 037401Google Scholar

    [8]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nat. Phys. 11 141Google Scholar

    [9]

    Xu S, Si C, Li Y, Gu B L, Duan W 2021 Nano Lett. 21 1785Google Scholar

    [10]

    Cheng Y C, Zhang Q Y, Schwingenschlögl U 2014 Phys. Rev. B 89 155429Google Scholar

    [11]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [12]

    张德贺, 周文哲, 李奥林, 欧阳方平 2021 70 096301Google Scholar

    Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301Google Scholar

    [13]

    Qi J S, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403Google Scholar

    [14]

    Zhang Q, Yang S A, Mi W, Cheng Y, Schwingenschlogl U 2016 Adv. Mater. 28 959Google Scholar

    [15]

    Zheng G B, Zhang B, Duan H M, Zhou W Z, Ouyang F P 2023 Physica E 148 115616Google Scholar

    [16]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [17]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [18]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [19]

    Liu H, Zhang Z, Li Y, Wu Y, Wu Z, Li X, Zhang C, Xu F, Kang J 2023 Adv. Photon. Nexus 2 026007Google Scholar

    [20]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [21]

    Abid A, Haneef M, Ali S, Dahshan A 2022 J. Solid State Chem. 311 123159Google Scholar

    [22]

    Mehdipour H, Kratzer P 2024 Phys. Rev. B 109 085425Google Scholar

    [23]

    Sattar S, Larsson J A, Canali C M, Roche S, Garcia J H 2022 Phys. Rev. B 105 L041402Google Scholar

    [24]

    Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163Google Scholar

    [25]

    Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [26]

    Zhang W L, Zhu H R, Zhang W Q, Wang J, Zhang T T, Yang S R, Shao B, Zuo X 2024 Appl. Surf. Sci. 647 158986Google Scholar

    [27]

    Ye Y, Xiao J, Wang H L, Ye Z L, Zhu H R, Zhao M, Wang Y, Zhao J H, Yin X B, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [28]

    Lu A Y, Zhu H R, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [29]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [30]

    Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y, Tongay S 2020 ACS Nano 14 15626Google Scholar

    [31]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petric M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Muller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320Google Scholar

    [32]

    Yang S Y, Shi D R, Wang T, Yue X Y, Zheng L, Zhang Q H, Gu L, Yang X Q, Shadike Z, Li H, Fu Z W 2020 J. Mater. Chem. A 8 25739Google Scholar

    [33]

    Guo S D, Zhu J X, Yin M Y, Liu B G 2022 Phys. Rev. B 105 104416Google Scholar

    [34]

    Zhang L, Zhao Y, Liu Y, Gao G 2023 Nanoscale 15 18910Google Scholar

    [35]

    Chen Y K, Zhao X S, An Y K 2024 Phys. Rev. B 109 125421Google Scholar

    [36]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [39]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [40]

    Kim H J https://github.com/Infant83/VASPBERRY [2024-7-11]

    [41]

    Hu T, Jia F H, Zhao G D, Wu J Y, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [42]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [43]

    Ma Z, Huang P, Li J, Zhang P, Zheng J X, Xiong W, Wang F, Zhang X W 2022 npj Comput. Mater. 8 11Google Scholar

    [44]

    Zhang H J, Li Y F, Hou J H, Du A J, Chen Z F 2016 Nano Lett. 16 6124Google Scholar

    [45]

    Shao Y, Shao M, Kawazoe Y, Shi X, Pan H 2018 J. Mater. Chem. A 6 10226Google Scholar

    [46]

    Yang C, Li J, Liu X L, Bai C L 2023 Phys. Chem. Chem. Phys. 25 28796Google Scholar

  • 图 1  T堆叠WSeTe/CrI3异质结俯视图与侧视图 (a) Te构型; (b) Se构型

    Figure 1.  Top and side views of the T-stacked WSeTe/CrI3 heterojunction: (a) Te model; (b) Se model.

    图 2  单层WSeTe的电子性质 (a)不考虑SOC的能带; (b)考虑SOC的能带; (c) Berry曲率; (d)能谷光学选择定则示意图

    Figure 2.  Electronic properties of monolayer WSeTe: (a) Band structures without SOC; (b) band structures with SOC; (c) Berry curvature; (d) schematic diagram of valley optical selection rules.

    图 3  WSeTe/CrI3异质结能带图 (a)不考虑SOC的Se构型; (b)考虑SOC的Se构型; (c)不考虑SOC的Te构型; (d)考虑SOC的Te构型; 蓝色虚线代表自旋向下, 红色实线代表自旋向上; 插图为能谷放大视图

    Figure 3.  Band structures of WSeTe/CrI3: (a) The band structures of Se model without SOC; (b) the band structures of Se model with SOC; (c) the band structures of Te model without SOC; (d) the band structures of Te model with SOC, the blue dashed lines represent spin-down, and the red lines represent spin-up. The insets are enlarged local views.

    图 4  WSeTe/CrI3异质结Te构型的投影能带图 (a)原子投影能带; (b) CrI3与WSeTe层投影能带; (c) W原子Sz方向自旋投影能带, 其中红色和蓝色代表自旋向上和向下的能带, ${E_\sigma }$代表导带谷到价带谷的能量差

    Figure 4.  Projected band structures of the Te-model WSeTe/CrI3 heterojunction: (a) Atom projected band structures; (b) layer projected band structures of CrI3 and WSeTe; (c) projected band structures of W along the Sz direction of spin, where the red and blue circles correspond to spin-up and spin-down bands, ${E_\sigma }$represents the energy difference from the conduction band valley to the valence band valley.

    图 5  KK' 附近能带与Berry曲率 (a)磁矩+Z (θ = 0°)方向的能带, 插图为磁矩方向示意图; (b) 磁矩+Z (θ = 0°)方向的Berry曲率; (c)磁矩–Z (θ = 180°)方向的能带;(d)磁矩–Z (θ = 180°)方向的Berry曲率; 红色和蓝色代表自旋向上和向下的能带

    Figure 5.  Bands and Berry curvature near the K and K' points: (a) Band structures for the magnetic moment along the +Z (θ = 0°) direction, with an inset diagram illustrating the direction of the magnetic moment; (b) Berry curvature for the magnetic moment along the +Z (θ = 0°) direction; (c) bands structures for the magnetic moment along the –Z (θ = 180°) direction; (d) Berry curvature for the magnetic moment along the –Z (θ = 180°) direction; the red and blue circles correspond to spin-up and spin-down bands.

    图 6  (a)不同Cr磁矩方向的能谷及谷极化大小, 其中蓝色线条代表不同磁矩方向下的谷极化; (b)不同层间距下能谷及谷极化大小, 其中蓝色线条代表不同层间距下的谷极化${\text{|}}\Delta {E_\sigma }{\text{|}}$大小; 橙色和绿色柱状图分别表示了KK' 处谷的能量

    Figure 6.  (a) Valley and valley polarization for different Cr magnetic moments, where blue lines represent the valley polarization under different magnetization angles; (b) valley and valley polarization under different interlayer distance, where blue lines represent the valley polarization magnitudes at different interlayer distance. The orange and green bar charts indicate the energy of the valleys at the K and K' , respectively.

    图 A1  WSeTe/CrI3异质结六种不同堆叠方式下的俯视图与侧视图 (a) Se构型的T型、H型和R型堆叠方式; (b) Te构型的T型、H型和R型堆叠方式

    Figure A1.  Top and side views of six different stacking configurations of the WSeTe/CrI3: (a) T-, H-, R-model with stacking configuration of Se; (b) T-, H-, R-model with stacking configuration of Te.

    图 A2  WSeTe/CrI3异质结声子谱

    Figure A2.  Phonon spectra of the WSeTe/CrI3 heterojunction.

    图 A3  WSeTe/CrI3 T堆叠Te构型HSE06计算的能带结构(红色和蓝色代表自旋向上和向下的能带)

    Figure A3.  WSeTe/CrI3’s band structures of the T-stacked Te model with hybrid functional HSE06. The red and blue circles correspond to spin-up and spin-down bands.

    表 A1  6种不同结构的晶格常数、层间距和结合能

    Table A1.  Lattice constant, interlayer distance, and binding energy for six different models.

    堆叠方式 晶格常数a = b 层间距d 结合能Eb/eV
    T-Te 6.84 3.79 –3.59
    T-Se 6.84 3.61 –3.58
    H-Te 6.83 3.85 –3.52
    H-Se 6.83 3.67 –3.51
    R-Te 6.84 3.78 –3.58
    R-Se 6.84 3.52 –3.58
    DownLoad: CSV
    Baidu
  • [1]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [2]

    Rycerz A, Tworzydło J, Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [3]

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302 [孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 70 027302]Google Scholar

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302Google Scholar

    [4]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [5]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [6]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [7]

    MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J, Ralph D C 2015 Phys. Rev. Lett. 114 037401Google Scholar

    [8]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nat. Phys. 11 141Google Scholar

    [9]

    Xu S, Si C, Li Y, Gu B L, Duan W 2021 Nano Lett. 21 1785Google Scholar

    [10]

    Cheng Y C, Zhang Q Y, Schwingenschlögl U 2014 Phys. Rev. B 89 155429Google Scholar

    [11]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [12]

    张德贺, 周文哲, 李奥林, 欧阳方平 2021 70 096301Google Scholar

    Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301Google Scholar

    [13]

    Qi J S, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403Google Scholar

    [14]

    Zhang Q, Yang S A, Mi W, Cheng Y, Schwingenschlogl U 2016 Adv. Mater. 28 959Google Scholar

    [15]

    Zheng G B, Zhang B, Duan H M, Zhou W Z, Ouyang F P 2023 Physica E 148 115616Google Scholar

    [16]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [17]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [18]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [19]

    Liu H, Zhang Z, Li Y, Wu Y, Wu Z, Li X, Zhang C, Xu F, Kang J 2023 Adv. Photon. Nexus 2 026007Google Scholar

    [20]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [21]

    Abid A, Haneef M, Ali S, Dahshan A 2022 J. Solid State Chem. 311 123159Google Scholar

    [22]

    Mehdipour H, Kratzer P 2024 Phys. Rev. B 109 085425Google Scholar

    [23]

    Sattar S, Larsson J A, Canali C M, Roche S, Garcia J H 2022 Phys. Rev. B 105 L041402Google Scholar

    [24]

    Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163Google Scholar

    [25]

    Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [26]

    Zhang W L, Zhu H R, Zhang W Q, Wang J, Zhang T T, Yang S R, Shao B, Zuo X 2024 Appl. Surf. Sci. 647 158986Google Scholar

    [27]

    Ye Y, Xiao J, Wang H L, Ye Z L, Zhu H R, Zhao M, Wang Y, Zhao J H, Yin X B, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [28]

    Lu A Y, Zhu H R, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [29]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [30]

    Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y, Tongay S 2020 ACS Nano 14 15626Google Scholar

    [31]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petric M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Muller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320Google Scholar

    [32]

    Yang S Y, Shi D R, Wang T, Yue X Y, Zheng L, Zhang Q H, Gu L, Yang X Q, Shadike Z, Li H, Fu Z W 2020 J. Mater. Chem. A 8 25739Google Scholar

    [33]

    Guo S D, Zhu J X, Yin M Y, Liu B G 2022 Phys. Rev. B 105 104416Google Scholar

    [34]

    Zhang L, Zhao Y, Liu Y, Gao G 2023 Nanoscale 15 18910Google Scholar

    [35]

    Chen Y K, Zhao X S, An Y K 2024 Phys. Rev. B 109 125421Google Scholar

    [36]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [39]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [40]

    Kim H J https://github.com/Infant83/VASPBERRY [2024-7-11]

    [41]

    Hu T, Jia F H, Zhao G D, Wu J Y, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [42]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [43]

    Ma Z, Huang P, Li J, Zhang P, Zheng J X, Xiong W, Wang F, Zhang X W 2022 npj Comput. Mater. 8 11Google Scholar

    [44]

    Zhang H J, Li Y F, Hou J H, Du A J, Chen Z F 2016 Nano Lett. 16 6124Google Scholar

    [45]

    Shao Y, Shao M, Kawazoe Y, Shi X, Pan H 2018 J. Mater. Chem. A 6 10226Google Scholar

    [46]

    Yang C, Li J, Liu X L, Bai C L 2023 Phys. Chem. Chem. Phys. 25 28796Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Wu Di, Yang Yong, Zhang Xiao-Feng, Huang Zhen-Yi, Wang Zhao-Dong. First-principles study on effect of alloying elements on heterogeneous nucleation of reverse austenite on Cu precipitation. Acta Physica Sinica, 2022, 71(8): 086301. doi: 10.7498/aps.71.20212144
    [3] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [4] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [6] Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang. First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms. Acta Physica Sinica, 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [7] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [8] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [9] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [10] Li Xiao-Ying, Huang Can, Zhu Yan, Li Jin-Bin, Fan Ji-Yu, Pan Yan-Fei, Shi Da-Ning, Ma Chun-Lan. Dzyaloshinsky-Moriya interaction in -(Zn, Cr)S(111) surface: First principle calculations. Acta Physica Sinica, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [11] Xiong Hui-Hui, Liu Zhao, Zhang Heng-Hua, Zhou Yang, Yu Yuan. First-principles calculation of influence of alloying elements on NbC heterogeneous nucleation in steel. Acta Physica Sinica, 2017, 66(16): 168101. doi: 10.7498/aps.66.168101
    [12] Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing. First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios. Acta Physica Sinica, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [13] Zhang Yan-Ru, Zhang Lin, Ren Jun-Feng, Yuan Xiao-Bo, Hu Gui-Chao. Magnetic coupling properties of Gd-doped ZnO nanowires studied by first-principles calculations. Acta Physica Sinica, 2015, 64(17): 178103. doi: 10.7498/aps.64.178103
    [14] Yang Li-Jian, Liu Bin, Gao Song-Wei, Chen Li-Jia. First-principles caculation and experimental study of metal magnetic memory effects. Acta Physica Sinica, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [15] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [16] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [17] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [18] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [20] LI SHU-PING, WANG REN-ZHI, ZHENG YONG-MEI, CAI SHU-HUI, HE GUO-MIN. APPLLICATIONS OF AVERAGE-BOND-ENERGY METHOD IN STRAINED-LAYER HETEROJUNCTION BAND OFFSET. Acta Physica Sinica, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
Metrics
  • Abstract views:  368
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2024
  • Accepted Date:  08 February 2025
  • Available Online:  04 March 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map