-
Two-dimensional (2D) materials exhibit massive potential in research and development in the scientific world due to their unique electrical, optical, thermal and mechanical properties. Graphene is an earliest found two-dimensional material, which has many excellent properties, such as high carrier mobility and large surface area. However, single layer graphene has a zero band gap, which limits its response in electronic devices. Unlike graphene, the transition metal sulfides (TMDs) have various band structures and chemical compositions, which greatly compensate for the defect of zero gap in graphene. The WS2 is one of the 2D TMDs exhibiting a series of unique properties, such as strong spin-orbit coupling, band splitting and high nonlinear susceptibility, which make it possess many applications in semiconducting optoelectronics and micro/nano-electronics. The 2D semiconductors along with semimetallic graphene are seen as basic building blocks for a new generation of nanoelectronic devices. In this way, the artificially designed TMD heterostructure is a promising option for ultrathin photodetectors. There are few reports on the physical mechanism of carrier mobility and charge distribution at the interface of WS2/graphene heterostructure, by varying the interfacial distance of WS2/graphene heterostructure to investigate the effect on the electronic properties. Here in this work, the corresponding effects of interface cohesive interaction and electronic properties of WS2/graphene heterostructure are studied by first-principles method. The calculation results indicate that the lattice mismatch between monolayer WS2 and graphene is low, the equilibrium layer distance d of about 3.42 Å for the WS2/graphene heterostructure and a weak van der Waals interaction forms in interface. Further, by analyzing the energy band structures and the three-dimensional charge density difference of WS2/graphene, we can identify that at the interface of the WS2 layer there appears an obvious electron accumulation: positive charges are accumulated near to the graphene layer, showing that WS2 is an n-type semiconductor due to the combination with graphene. Furthermore, the total density of states and corresponding partial density of states of WS2/graphene heterostructure are investigated, and the results show that the valence band is composed of hybrid orbitals of W 5d and C 2p, whereas the conduction band is comprised of W 5d and S 3p orbitals, the orbital hybridization between W 5d and S 3p will cause photogenerated electrons to transfer easily from the internal W atoms to the external S atoms, thereby forming a build-in internal electric field from graphene to WS2. Finally, by varying the interfacial distance for analyzing the Schottky barrier transition, as the interfacial distance is changed greatly from 2.4 Å to 4.2 Å, the shape of the band changes slightly, however, the Fermi level descends relatively gradually, which can achieve the transition from a p-type Schottky contact to an n-type Schottky contact in the WS2/graphene. The plane-averaged charge density difference proves that the interfacial charge transfer and the Fermi level shift are the reasons for determining the Schottky barrier transition in the WS2/graphene heterostructure. Our studies may prove to be instrumental in the future design and fabrication of van der Waals based field effect transistors.
-
Keywords:
- heterostructure /
- band structure /
- Schottky contact /
- first-principles
[1] Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys. (Berlin)
2019 1800390Google Scholar [2] Wen B, Cao M S, Lu M M , Cao W Q, Shi H L, Liu J, Wang X X, Jin H B , Fang X Y, Wang W Z , Yuan J 2014 Adv. Mater. 26 3484Google Scholar
[3] Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar
[4] Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar
[5] Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924Google Scholar
[6] Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[7] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar
[8] Zhao H, Guo Q S, Xia F N, Wang H 2015 Nanophotonics 4 128Google Scholar
[9] Yang L Y, Sinitsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar
[10] Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L S, Xu J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar
[11] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311Google Scholar
[12] Georgiou T, Yang H F, Jalil R, Chapman J, Novoselov K S, Mishchenko A 2014 Dalton Trans. 43 10388Google Scholar
[13] Chen K T, Chang S T H 2017 Vacuum 140 172Google Scholar
[14] Cong C X, Shang J Z, Wang Y L, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar
[15] Iqbal M W, Iqbal M Z, Khan M F 2016 RSC Adv. 6 24675Google Scholar
[16] Yue Y, Chen J, Zhang Y, Ding S, Zhao F, Wang Y, Feng W 2018 ACS Appl. Mater. Interfaces DOI: 10.1021/acsami. 8b05885
[17] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar
[18] Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar
[19] Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar
[20] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[21] Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B L, Chen H S 2013 J. Mater. Chem. C 1 1618Google Scholar
[22] Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo Herrero P, Leroy B J 2011 Nat. Mater. 10 282Google Scholar
[23] Neek A M, Sadeghi A, Berdiyorov G R, Peeters F M 2013 Appl. Phys. Lett. 103 261904Google Scholar
[24] Cai Y, Chu C P, Wei C M, Chou M Y 2013 Matter Mater. Phys. 88 245408Google Scholar
[25] Zhang F, Li W, Ma Y Q, Tang Y N, Dai X Q 2017 RSC Adv. 7 29350Google Scholar
[26] Tan H J, Xu W S, Sheng Y W, Lau C S, Fan Y, Chen Q, Wang X C, Zhou Y Q, Warner J H 2017 Adv. Mater. 29 1702917Google Scholar
[27] 危阳, 马新国, 祝林, 贺华, 黄楚云 2017 66 087101Google Scholar
Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar
[28] Jin C J, Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 19928Google Scholar
[29] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271Google Scholar
[30] Jiang J W 2015 Front. Phys. 10 287Google Scholar
[31] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717Google Scholar
[32] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[33] Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar
[34] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[35] Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar
[36] Björkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar
[37] Hu J S, Ji G P, Ma X G, He H, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar
[38] Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254Google Scholar
[39] Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393Google Scholar
[40] Zhou W, Zou X L, Najmaei S 2013 Nano Lett. 13 2615Google Scholar
[41] Li X E, Basile L, Huang B 2015 ACS Nano 9 8078Google Scholar
[42] Wang Q H, Kalantar-Zadeh K, Kis A 2012 Nature Nanotechnol. 7 699Google Scholar
[43] Zhang Y W, Li H, Wang L, Xie X M, Zhang S L, Liu R, Qiu Z J 2015 Sci. Reports 5 7938Google Scholar
[44] Fang X Y, Yu X X, Zheng H M, Jin B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar
-
图 1 单层二硫化钨/石墨烯异质结匹配模型的顶视图 (a)单层二硫化钨3 × 3 × 1超胞与石墨烯4 × 4 × 1超胞的匹配模型; (b)单层二硫化钨4 × 4 × 1超胞与石墨烯5 × 5 × 1超胞的匹配模型
Figure 1. Top views of two match configurations of monolayer WS2/graphene heterostructure: (a) Match configuration between 3 × 3 × 1 lateral periodicity of monolayer WS2 sheet and 4 × 4 × 1 lateral periodicity of graphene; (b) match configuration between 4 × 4 × 1 lateral periodicity of monolayer WS2 sheet and 5 × 5 × 1 lateral periodicity of graphene.
图 5 不同层间距下的二硫化钨/石墨烯异质结的能带图, 其中蓝色曲线代表石墨烯部分的贡献 (a)−(j)分别代表层间距为2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 Å, 费米能级处在0 eV, 用红色虚线表示
Figure 5. Band structures of WS2/graphene heterostructure under different interface distances. Blue curves denote the contributions from graphene. Panels (a)−(j) correspond to the interface distances of 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 Å, respectively. The Fermi level is set to zero and marked by red dotted line.
-
[1] Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys. (Berlin)
2019 1800390Google Scholar [2] Wen B, Cao M S, Lu M M , Cao W Q, Shi H L, Liu J, Wang X X, Jin H B , Fang X Y, Wang W Z , Yuan J 2014 Adv. Mater. 26 3484Google Scholar
[3] Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar
[4] Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar
[5] Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924Google Scholar
[6] Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[7] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar
[8] Zhao H, Guo Q S, Xia F N, Wang H 2015 Nanophotonics 4 128Google Scholar
[9] Yang L Y, Sinitsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar
[10] Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L S, Xu J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar
[11] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311Google Scholar
[12] Georgiou T, Yang H F, Jalil R, Chapman J, Novoselov K S, Mishchenko A 2014 Dalton Trans. 43 10388Google Scholar
[13] Chen K T, Chang S T H 2017 Vacuum 140 172Google Scholar
[14] Cong C X, Shang J Z, Wang Y L, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar
[15] Iqbal M W, Iqbal M Z, Khan M F 2016 RSC Adv. 6 24675Google Scholar
[16] Yue Y, Chen J, Zhang Y, Ding S, Zhao F, Wang Y, Feng W 2018 ACS Appl. Mater. Interfaces DOI: 10.1021/acsami. 8b05885
[17] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar
[18] Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar
[19] Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar
[20] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[21] Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B L, Chen H S 2013 J. Mater. Chem. C 1 1618Google Scholar
[22] Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo Herrero P, Leroy B J 2011 Nat. Mater. 10 282Google Scholar
[23] Neek A M, Sadeghi A, Berdiyorov G R, Peeters F M 2013 Appl. Phys. Lett. 103 261904Google Scholar
[24] Cai Y, Chu C P, Wei C M, Chou M Y 2013 Matter Mater. Phys. 88 245408Google Scholar
[25] Zhang F, Li W, Ma Y Q, Tang Y N, Dai X Q 2017 RSC Adv. 7 29350Google Scholar
[26] Tan H J, Xu W S, Sheng Y W, Lau C S, Fan Y, Chen Q, Wang X C, Zhou Y Q, Warner J H 2017 Adv. Mater. 29 1702917Google Scholar
[27] 危阳, 马新国, 祝林, 贺华, 黄楚云 2017 66 087101Google Scholar
Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar
[28] Jin C J, Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 19928Google Scholar
[29] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271Google Scholar
[30] Jiang J W 2015 Front. Phys. 10 287Google Scholar
[31] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717Google Scholar
[32] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[33] Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar
[34] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[35] Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar
[36] Björkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar
[37] Hu J S, Ji G P, Ma X G, He H, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar
[38] Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254Google Scholar
[39] Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393Google Scholar
[40] Zhou W, Zou X L, Najmaei S 2013 Nano Lett. 13 2615Google Scholar
[41] Li X E, Basile L, Huang B 2015 ACS Nano 9 8078Google Scholar
[42] Wang Q H, Kalantar-Zadeh K, Kis A 2012 Nature Nanotechnol. 7 699Google Scholar
[43] Zhang Y W, Li H, Wang L, Xie X M, Zhang S L, Liu R, Qiu Z J 2015 Sci. Reports 5 7938Google Scholar
[44] Fang X Y, Yu X X, Zheng H M, Jin B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar
Catalog
Metrics
- Abstract views: 13805
- PDF Downloads: 358
- Cited By: 0