搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WSeTe/CrI3范德华异质结能谷的调控研究

廖玉民 陈许敏 徐黄雷 易水生 王辉 霍德璇

引用本文:
Citation:

WSeTe/CrI3范德华异质结能谷的调控研究

廖玉民, 陈许敏, 徐黄雷, 易水生, 王辉, 霍德璇

Valley manipulation in WSeTe/CrI3 van der Waals Het-erostructures: A first-principles study

LIAO Yumin, CHEN Xumin, XU Huanglei, YI Shuisheng, WANG Hui, HUO Dexuan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 范德华异质结构为设计二维材料的电子、自旋特性提供了丰富的平台.解除谷简并是利用谷自由度处理和存储谷电子信息的必要条件,二维范德华异质结构中的邻近效应为定制邻近材料的电子能带结构提供了可控的方法.本文基于第一性原理计算,研究了 WSeTe/CrI3 范德华异质结的电子能带结构.通过施加垂直应变与改变衬底磁矩方向对能谷进行调控.单层WSeTe在KK'存在一对简并能谷,在自旋轨道耦合作用与磁性衬底CrI3邻近效应作用下会产生较大的谷劈裂和谷极化.异质结产生的谷极化为25 meV.施加垂直应变可以有效的调节能谷极化,减小层间距可以增加谷极化.此外,衬底磁矩方向变化可以有效调控谷极化的方向和大小.本文的研究结果为谷自由度的调控提供了一个有效的方法,为谷电子学和自旋电子学的应用提供了新的途径.
    The valley degree of freedom, in addition to charge and spin, can be used to process information and to perform logic operations with the advantage of low power consumption and high speed. The effective manipulation of valley degrees of freedom is essential for their practical applications in valleytronics and spintronics. This study investigates effective strategies for the valley manipulation of the WSeTe/CrI3 van der Waals heterojunction with approximate 2% lattice mismatch by the first-principles calculations. The valley degree of freedom in WSeTe can be modulated by the mag-netism of Cr atoms in the substrate via the magnetic proximity effect, including the vertical strain method and the rotation of the magnetic moments of Cr atoms. First-principles calculations were performed by using the VASP software package with the generalized gradient approximation functional in PerdewBurke-Ernzerhof (PBE) form. The spin-orbit coupling was considered when calculating the band structure to investigate the valley properties. The dependence of valley polarization on vertical strain and the magnetic moment direction of the substrate have been systematically analyzed. There are two distinct stacking configurations for the WSeTe/CrI3 het-erojunction with Te/Se atom at the interface, namely Te-stacking and Se-stacking. While single layer of WSeTe does not have valley polarization, the Te-stacking and Se-stacking WSeTe/CrI3 heterojunctions exhibit valley polarizations of 25 meV and 2 meV, respectively, which is under the combined influence of spin-orbit coupling and the proximity effect from the magnetic substrate CrI3, indicating the importance of the stacking configuration. The Te-stacking configuration of the heterojunction has a larger valley polarization due to stronger orbital hybridization between W atoms in WSeTe layer and Cr atoms in CrI3 layer. The application of vertical strain, which ef-fectively tunes the interlayer distance, significantly regulates the valley polarization. Specifically, the valley polarization is increased to 59 meV when the interlayer dis-tance is decreased by 0.5 Å, while it decreases to 10 meV when the interlayer distance is increased by 0.5 Å. Additionally, when the magnetic moment of the CrI3 substrate is rotated by 360°, the valley polarization varies between -25 meV and 25 meV. It reaches maximum when the magnetic moment is aligned along the out-of-plane direc-tion. In conclusion, this study demonstrates that the valley degree of freedom in the WSeTe/CrI3 van der Waals heterojunction can be effectively manipulated by adjusting the interlayer distance through vertical strain and by controlling the magnetic moment direction of the substrate. These findings provide valuable insights into the design and application of valleytronic and spintronic devices based on two-dimensional van der Waals heterostructures.
  • [1]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404

    [2]

    Rycerz A, Tworzydło J, Beenakker C W J 2007 Nat. Phys. 3 172

    [3]

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302 (in Chinese) [孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 70 027302]

    [4]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055

    [5]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [6]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148

    [7]

    MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J, Ralph D C 2015 Phys. Rev. Lett. 114 037401

    [8]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nat. Phys. 11 141

    [9]

    Xu S, Si C, Li Y, Gu B L, Duan W 2021 Nano Lett. 21 1785

    [10]

    Cheng Y C, Zhang Q Y, Schwingenschlögl U 2014 Phys. Rev. B 89 155429

    [11]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201

    [12]

    Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301 (in Chinese) [张德贺, 周文哲, 李奥林, 欧阳方平 2021 70 096301]

    [13]

    Qi J, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403

    [14]

    Zhang Q, Yang S A, Mi W, Cheng Y, Schwingenschlogl U 2016 Adv. Mater. 28 959

    [15]

    Zheng G, Zhang B, Duan H, Zhou W, Ouyang F 2023 Physica E 148 115616

    [16]

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101 (in Chinese) [邓霖湄, 司君山, 吴绪才, 张卫兵 2022 71 147101]

    [17]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B Condens. Matter and Mater. Phys. 77 235406

    [18]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494

    [19]

    Liu H, Zhang Z, Li Y, Wu Y, Wu Z, Li X, Zhang C, Xu F, Kang J 2023 Adv. Photon. Nexus 2 026007

    [20]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643

    [21]

    Abid A, Haneef M, Ali S, Dahshan A 2022 J. Solid State Chem. 311 123159

    [22]

    Mehdipour H, Kratzer P 2024 Phys. Rev. B 109 085425

    [23]

    Sattar S, Larsson J A, Canali C M, Roche S, Garcia J H 2022 Phys. Rev. B 105 L041402

    [24]

    Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163

    [25]

    Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401

    [26]

    Zhang W, Zhu H, Zhang W, Wang J, Zhang T, Yang S, Shao B, Zuo X 2024 Appl. Surf. Sci. 647 158986

    [27]

    Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotechnol. 11 598

    [28]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744

    [29]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192

    [30]

    Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y, Tongay S 2020 ACS Nano 14 15626

    [31]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petric M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Muller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320

    [32]

    Yang S Y, Shi D R, Wang T, Yue X Y, Zheng L, Zhang Q H, Gu L, Yang X Q, Shadike Z, Li H, Fu Z-W 2020 J. Mater. Chem. A 8 25739

    [33]

    Guo S-D, Zhu J-X, Yin M-Y, Liu B-G 2022 Phys. Rev. B 105 104416

    [34]

    Zhang L, Zhao Y, Liu Y, Gao G 2023 Nanoscale 15 18910

    [35]

    Chen Y, Zhao X, An Y 2024 Phys. Rev. B 109 125421

    [36]

    Kresse, Furthmuller 1996 Phys. Rev. B Condens. Matter 54 11169

    [37]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [39]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505

    [40]

    Kim H J https://github.com/Infant83/VASPBERRY [2024-7-11]

    [41]

    Hu T, Jia F H, Zhao G D, Wu J Y, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404

    [42]

    Webster L, Yan J-A 2018 Phys. Rev. B 98 144411

    [43]

    Ma Z, Huang P, Li J, Zhang P, Zheng J, Xiong W, Wang F, Zhang X 2022 Npj Comput. Mater. 8 11

    [44]

    Zhang H, Li Y, Hou J, Du A, Chen Z 2016 Nano Lett. 16 6124

    [45]

    Shao Y, Shao M, Kawazoe Y, Shi X, Pan H 2018 J. Mater. Chem. A 6 10226

    [46]

    Yang C, Li J, Liu X, Bai C 2023 Phys. Chem. Chem. Phys. 25 28796

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , doi: 10.7498/aps.73.20231979
    [2] 吴迪, 杨永, 章小峰, 黄贞益, 王昭东. 第一性原理研究合金元素对逆变奥氏体在Cu沉淀上异质形核的影响.  , doi: 10.7498/aps.71.20212144
    [3] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究.  , doi: 10.7498/aps.71.20220544
    [4] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , doi: 10.7498/aps.71.20220939
    [5] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究.  , doi: 10.7498/aps.71.20220627
    [6] 秦文静, 徐波, 孙宝珍, 刘刚. 原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究.  , doi: 10.7498/aps.70.20210090
    [7] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , doi: 10.7498/aps.70.20210956
    [8] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究.  , doi: 10.7498/aps.69.20200080
    [9] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究.  , doi: 10.7498/aps.68.20190020
    [10] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算.  , doi: 10.7498/aps.67.20180342
    [11] 熊辉辉, 刘昭, 张恒华, 周阳, 俞园. 合金元素对钢中NbC异质形核影响的第一性原理研究.  , doi: 10.7498/aps.66.168101
    [12] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究.  , doi: 10.7498/aps.65.077301
    [13] 张燕如, 张琳, 任俊峰, 原晓波, 胡贵超. Gd掺杂ZnO纳米线磁耦合性质的第一性原理研究.  , doi: 10.7498/aps.64.178103
    [14] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究.  , doi: 10.7498/aps.62.086201
    [15] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究.  , doi: 10.7498/aps.62.137101
    [16] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , doi: 10.7498/aps.59.6487
    [17] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究.  , doi: 10.7498/aps.59.7961
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , doi: 10.7498/aps.59.1248
    [19] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究.  , doi: 10.7498/aps.58.2011
    [20] 李书平, 王仁智, 郑永梅, 蔡淑惠, 何国敏. 平均键能方法在应变层异质结带阶研究中的应用.  , doi: 10.7498/aps.49.1441
计量
  • 文章访问数:  80
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-04

/

返回文章
返回
Baidu
map