Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures

Wang Hui Xu Meng Zheng Ren-Kui

Citation:

Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures

Wang Hui, Xu Meng, Zheng Ren-Kui
PDF
HTML
Get Citation
  • With the rapid development of microelectronic integration technology, the miniaturization, integration and multifunction of electronic devices are becoming a general trend. Two-dimensional materials are a class of layered material with atomic layer thickness, and have unique electrical, magnetic, optical and mechanical properties. The co-existence of the weak van der Waals force between layers and the strong covalent bonding within layers makes the two-dimensional material very suitable for the miniature design of new-generation multifunctional electronic devices. Two-dimensional materials, represented by graphene and transition metal chalcogenides, exhibit high mobility, adjustable energy band and high visible light transmittance, and thus having become the frontier hotspots in the field of micro-nanoscience in recent years. Synergy between two-dimensional materials and various functional materials such as SiO2 insulator, semiconductor, metal and organic compound may lead to new properties and device applications, thus can deepen and expand the basic research and application of two-dimensional materials. Among them, ferroelectric materials have received much attention because of their spontaneous polarizations, high dielectric constants, and high piezoelectric coefficients. The two-dimensional ferroelectric composites well have the advantages of the two, i.e. they not only contain a variety of rich phenomena such as the magnetoelectric coupling effect, ferroelectric field effect and lattice strain effect, tunneling effect, photoelectric effect, and photoluminescence effect, but also have broad applications in devices such as multi-state memories, tunneling transistors, photoelectric diodes, solar cells, super capacitors, and pyroelectric infrared detectors, which have attracted wide concern from academia and industry. To better understand the combination of two-dimensional thin films with ferroelectric substrates and provide a holistic view, we review the researches of several typical two-dimensional film/ferroelectrics heterostructures in this article. First, two-dimensional materials and ferroelectric materials are introduced. Then, the physical mechanism at the interface is briefly illustrated. After that, several typical two-dimensional film/ferroelectrics heterostructures are mainly introduced. The ferroelectric materials including Pb(Zr1–xTix)O3, (1–x)PbMg1/3Nb2/3O3xPbTiO3, P(VDF-TrFE), are mainly summarized, and other ferroelectric materials such as P(VDF-TrFE-CFE), BaTiO3, BiFeO3, PbTiO3, CuInP2S6, HfO2 are briefly involved. The future research emphasis of the two-dimensional materials/ferroelectrics composites is also suggested at the end of the article. This review will present a significant reference to the future design of miniature and multifunctional devices.
      Corresponding author: Zheng Ren-Kui, zrk@ustc.edu
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572278, 11974155)
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768Google Scholar

    [3]

    Li L, Chen Z, Hu Y, Wang X W, Zhang T, Chen W, Wang Q B 2013 J. Am. Chem. Soc. 135 1213Google Scholar

    [4]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [5]

    Lü L, Zhuge F, Xie F, Xiong X J, Zhang Q F, Zhang N, Huang Y, Zhai T Y 2019 Nat. Commun. 10 3331Google Scholar

    [6]

    Eswaraiah V, Zeng Q S, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Topsakal M, Aktürk E, Ciraci S 2009 Phys. Rev. B 79 115442Google Scholar

    [9]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [10]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 9439Google Scholar

    [11]

    Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P 2013 ACS Nano 7 7126Google Scholar

    [12]

    Liu M, Nan T X, Hu J M, Zhao S S, Zhou Z, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q, Sun N X 2016 NPG Asia Mater. 8 e 31 6Google Scholar

    [13]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [14]

    Yang Y J, Yang M M, Luo Z L, Huang H, Wang H, Bao J, Hu C, Pan G, Yao Y, Liu Y, Li X G, Zhang S, Zhao Y G, Gao C 2012 Appl. Phys. Lett. 100 043506Google Scholar

    [15]

    Yan J M, Xu M, Chen T W, Yang M M, Liu F, Wang H, Guo L, Xu Z X, Fan F Y, Gao G Y, Dong S N, Li X G, Luo H S, Zhao W Y, Zheng R K 2019 Phys. Rev. Appl. 11 034037Google Scholar

    [16]

    Jie W J, Hui Y Y, Chan N Y, Zhang Y, Lau S P, Hao J H 2013 J. Phys. Chem. C 117 13747Google Scholar

    [17]

    Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stomer H L, Kim P 2007 Phys. Rev. Lett. 99 246803Google Scholar

    [18]

    Fratini S, Guinea F 2008 Phys. Rev. B 77 195415Google Scholar

    [19]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nat. Nanotech. 3 206Google Scholar

    [20]

    Hong X, Posadas A, Zou K, Ahn C H, Zhu J 2009 Phys. Rev. Lett. 102 136804Google Scholar

    [21]

    Hong X, Hoffman J, Posadas A, Zhu K, Ahn C H, Zhu J 2010 Appl. Phys. Lett. 97 033114Google Scholar

    [22]

    Zheng Y, Ni G X, Bae S, Cong C X, Kahya O, Toh C T, Kim H R, Im D, Yu T, Ahn J H, Hong B H, Özyimaz B 2011 Europhys. Lett. 93 17002Google Scholar

    [23]

    Song E B, Lian B, Kim S M, Lee S, Chung T K, Wang M, Zeng C, Xu G, Wong K, Zhou Y, Rasool H I, Seo D H, Chung H J, Heo J, Seo S, Wang K L 2011 Appl. Phys. Lett. 99 042109Google Scholar

    [24]

    Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotech. 24 475202Google Scholar

    [25]

    Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693Google Scholar

    [26]

    Zhang X W, Xie D, Xu J, Zhao H, Zhang C, Sun Y, Zhao Y, Feng T, Li G, Ren T 2014 12th IEEE International Conference on Solid-State and Intergrated Circuit Technology Guilin, China, Oct 28−31, 2014 p978

    [27]

    Zhang X W, Xie D, Xu J L, Zhang C, Sun Y L, Zhao Y F, Li X, Li X M, Zhu H W, Chen H M, Chang T C 2015 Carbon 93 384Google Scholar

    [28]

    Lipatov A, Fursina A, Vo T H, Sharma P, Gruverman A, Sinitskii A 2017 Adv. Electron. Mater. 3 1700020Google Scholar

    [29]

    Rogers S P, Xu R, Pandya S, Martin L W, Shim M 2017 J. Phys. Chem. C 121 7542Google Scholar

    [30]

    Fang B J, Ding C L, Wu J, Du Q B, Ding J N, Zhao X Y, Xu H Q, Luo H S 2012 Eur. Phys. J. Appl. Phys. 57 30101Google Scholar

    [31]

    Liu L, Li X, Wu X, Wang Y, Di W, Lin D, Zhao X, Luo H, Neumann N 2009 Appl. Phys. Lett. 95 192903Google Scholar

    [32]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [33]

    Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A, Schmidt O G 2012 Nano Lett. 10 3453Google Scholar

    [34]

    Jie W J, Hui Y Y, Zhang Y, Lau S P, Hao J H 2013 Appl. Phys. Lett. 102 223112Google Scholar

    [35]

    Jie W J, Hao J H 2018 Nanoscale 10 328Google Scholar

    [36]

    Park N, Kang H, Park J, Lee Y, Yun Y, Lee J H, Lee S G, Lee Y H, Suh D 2015 ACS Nano 9 10729Google Scholar

    [37]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651Google Scholar

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [39]

    Wang L, Luo J, Chen Y, Lin L, Huang X, Xue H, Gao J 2019 ACS Appl. Mater. Interface 11 17774Google Scholar

    [40]

    Zhao X, Papageorgiou D G, Zhu L Y, Ding F, Young R J 2019 Nanoscale 11 14339Google Scholar

    [41]

    Zhou M Q, Kang Z X, Zhu S M 2019 Nanotechnology 30 395701Google Scholar

    [42]

    Zheng Y, Ni G X, Toh C T, Zeng M G, Chen S T, Yao K, Özyilmaz B 2009 Appl. Phys. Lett. 94 163505Google Scholar

    [43]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [44]

    Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K, Özyilmaz B 2012 ACS Nano 6 3935Google Scholar

    [45]

    Wang X D, Tang M H, Chen Y, Wu G, Huang H, Zhao X, Tian B, Wang J, Sun S, Shen H, Lin T, Sun J, Meng X, Chu J 2016 Opt. Quant. Electron. 48 345Google Scholar

    [46]

    Wang X, Chen Y, Wu G, Wang J, Tian B, Sun S, Shen H, Lin T, Hu W, Kang T, Tang M, Xiao Y, Sun J, Meng X, Chu J 2018 Nanotechnology 29 134002Google Scholar

    [47]

    Bae S H, Kahya O, Sharma B K, Kwoon J, Cho H J, Özyilmaz B, Ahn J H 2013 ACS Nano 7 3130Google Scholar

    [48]

    Park S, Kim Y, Jung H, Park J Y, Lee N, Seo Y 2017 Sci. Rep. 7 17290Google Scholar

    [49]

    Kim S, Dong Y, Hossain M M, Gorman S, Towfeeq I, Gajula D, Childress A, Rao A M, Koley G 2019 ACS Appl. Mater. Interface 11 16006Google Scholar

    [50]

    Silibin M V, Bystrov V S, Karpinsky D V, Nasani N, Goncalves G, Gavrilin I M, Solnyshkin A V, Marques P A A P, Singh B, Bdikin 2017 Appl. Surf. Sci. 421 42Google Scholar

    [51]

    Yaqoob U, Iftekhar Uddin A S M, Chung G S 2018 Compos. Part B 136 92Google Scholar

    [52]

    Chen Y, Zhang L, Liu J, Lin X, Xu W, Yue Y, Shen Q D 2019 Carbon 144 15Google Scholar

    [53]

    Garain S, Jana S, Sinha T K, Mandal D 2016 ACS Appl. Mater. Interfaces 8 4532Google Scholar

    [54]

    Karan S K, Mandal D, Khatua B B 2015 Nanoscale 7 10655Google Scholar

    [55]

    Lu P, Wu X j, Guo W, Zeng X C 2012 Phys. Chem. Chem. Phys. 14 13035Google Scholar

    [56]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [57]

    Zhang X W, Xie D, Xu J L, Sun Y L, Li X, Zhang C, Dai R X, Zhao Y F, Li X M, Li X, Zhu H W 2015 IEEE Electron. Device Lett. 36 784Google Scholar

    [58]

    Zhou C J, Wang X S, Raju S, Lin Z Y, Villaroman D, Huang B L, Chan H L W, Chan M, Chai Y 2015 Nanoscale 7 8695Google Scholar

    [59]

    Lu Z Y, Serrao C, Khan A I, You L, Wong J C, Ye Y, Zhu H Y, Zhang X, Salahuddin S 2017 Appl. Phys. Lett. 111 023104Google Scholar

    [60]

    Ganapathi K L, Rath M, Rao M S R 2019 Semicond. Sci. Technol. 34 055016Google Scholar

    [61]

    Sun Y L, Xie D, Zhang X W, Xu J L, Li X M, Li X, Dai R X, Li X, Li P, Gao X S, Zhu H W 2017 Nanotechnology 28 045204Google Scholar

    [62]

    Li T, Gao L M, Xie H Q, Ye L Q, Yang W D, Liu Q L, Li K 2018 Mater. Res. Express 5 066308Google Scholar

    [63]

    Lipatov A, Sharma P, Gruverman A, Sinitskii A 2015 ACS Nano 9 8089Google Scholar

    [64]

    Lipatov A, Li T, Vorobeva N S, Sinitskii A, Gruverman A 2019 Nano Lett. 19 3194Google Scholar

    [65]

    Ko C, Lee Y, Chen Y, Suh J, Fu D, Suslu A, Lee S, Clarkson J D, Choe H S, Tongay S, Ramesh R, Wu J 2016 Adv. Mater. 28 2923Google Scholar

    [66]

    Li C H, McCreary K M, Jonker B T 2016 ACS Omega 1 1075Google Scholar

    [67]

    Fang H J, Lin Z Y, Wang X S, Tang C Y, Chen Y, Zhang F, Chai Y, Li Q, Yan Q F, Chan H L W, Dai J Y 2015 Opt. Express 23 251881Google Scholar

    [68]

    Liu Y D, Guo J M, Yu A F, Zhang Y, Kou J Z, Zhang K, Wen R M, Zhang Y, Zhai J Y, Wang Z L 2018 Adv. Mater. 30 1704524Google Scholar

    [69]

    Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S, Im S 2012 Small 8 3111Google Scholar

    [70]

    Radisavljevic B, Radnovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [71]

    Kobayashi T, Hori N, Nakajima T, Kawae T 2016 Appl. Phys. Lett. 108 132903Google Scholar

    [72]

    Liu L, Wang X D, Han L, Tian B, Chen Y, Wu G L, Li D, Yan M G, Wang T, Sun S, Shen H, Lin T, Sun J L, Duan C G, Wang J L, Meng X J, Chu J H 2017 AIP Adv. 7 065121Google Scholar

    [73]

    Liu X Q, Liang R R, Gao G Y, Pan C F, Jiang C S, Xu Q, Luo J, Zou X M, Yang Z Y, Liao L, Wang Z L 2018 Adv. Mater. 30 1800932Google Scholar

    [74]

    Wang X D, Liu C, Chen Y, Wu G J, Yan X, Huang H, Wang Peng, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Lin T, Hu W D, Tang M H, Zhou P, Wang J L, Sun J L, Meng X J, Chu J H, Li Z 2017 2 D Mater. 4 025036Google Scholar

    [75]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X, Guo N, Sun H S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [76]

    Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J, Zhang S T, Bian L, Sun J, Meng X, Chu J 2016 Nanotechnology 27 364002Google Scholar

    [77]

    Yin L, Wang Z X, Wang F, Xu K, Cheng R Q, Wen Y, Li J, He J 2017 Appl. Phys. Lett. 110 123106Google Scholar

    [78]

    Chen Y, Wang X D, Wang P, Huang H, Wu G J, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Wang J H, Hu W D, Sun J L, Meng X J, Chu J H 2016 ACS Appl. Mater. Interfaces 8 32083Google Scholar

    [79]

    Yin C, Wang X D, Chen Y, Li T, Sun S, Shen H, Du P, Sun J, Meng X, Chu J, Wong H F, Leung C W, Wang Z, Wang J 2018 Nanoscale 10 1727Google Scholar

    [80]

    Nguyen A, Sharma P, Scott T, Preciado E, Klee V, Sun D, Lu I H, Barroso D, Kim S, Shur V Y, Akhmatkhanov A R, Gryveman A, Bartels L, Dowben P A 2015 Nano Lett. 15 3364Google Scholar

    [81]

    Wen B, Zhu Y, Yudistira D, Boes A, Zhang L, Yidirim T, Liu B, Yan H, Sun X, Zhou Y, Xue Y, Zhang Y, Fu L, Mitchell A, Zhang H, Lu Y 2019 ACS Nano 13 5335Google Scholar

    [82]

    Jin H, Yoon W Y, Jo W 2017 Appl. Phys. Lett. 110 191601Google Scholar

    [83]

    Shin H W, Son J Y 2018 Electron. Mater. Lett. 14 59Google Scholar

    [84]

    Li T, Lipatov A, Lu H, Lee H, Lee J W, Torun E, Wirtz L, Eom C B, Íñigue J, Sinitskii A, Gruverman A 2018 Nat. Comm. 9 3344Google Scholar

    [85]

    Li T, Sharma P, Lipatov A, Lee H, Lee J W, Zhuravlev M Y, Paudel T R, Genenko Y A, Eom C B, Tsymbal E Y, Sinitskii A, Gruveman A 2017 Nano Lett. 17 922Google Scholar

    [86]

    Li Y, Sun X Y, Xu C Y, Cao J, Sun Z Y, Zhen L 2018 Nanoscale 10 23080Google Scholar

    [87]

    Shin H W, Son J Y 2019 J. Alloy. Compd. 792 673Google Scholar

    [88]

    Si M W, Liao P Y, Qiu G, Duan Y, Ye P D 2018 ACS Nano 12 6700Google Scholar

    [89]

    Si M W, Jiang C S, Chung W, Du Y C, Alam M A, Ye P D 2018 Nano Lett. 18 3682Google Scholar

    [90]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [91]

    Wang M, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [92]

    Zhao X W, Dong S N, Gao G Y, Xu Z X, Xu M, Yan J M, Zhao W Y, Liu Y K, Yan S Y, Zhang J X, Wang Y, Lu H Z, Li X G, Furdya J K, Luo H S, Zheng R K 2018 Quant. Mater. 3 52Google Scholar

    [93]

    Yan J M, Xu Z X, Chen T W, Xu M, Zhang C, Zhao X W, Liu F, Guo L, Yan S Y, Gao G Y, Wang F F, Zhang J X, Dong S N, Li X G, Luo H S, Zhao W, Zheng R K 2019 ACS Appl. Mater. Interfaces 11 9548Google Scholar

    [94]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Technol. 9 372Google Scholar

    [95]

    Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q, Lu Y 2014 ACS Nano 8 9590Google Scholar

    [96]

    Lee Y T, Kwoon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang H K, Im S 2015 ACS Nano 9 10394Google Scholar

    [97]

    Xie L, Chen X, Dong Z, Yu Q, Zhao X X, Yuan G L, Zeng Z M, Wang Y J, Zhang K 2019 Adv. Electron. Mater. 5 1900458Google Scholar

  • 图 1  结构示意图 (a) 中间插层的二维材料[10]; (b) 石墨烯/MoS2/PMN-PT异质结[11]; (c) MoS2/P(VDF-TrFE)/SiO2/Si异质结[5]

    Figure 1.  The schematic diagrams: (a) 2D Materials with intercalation[10]; (b) graphene/MoS2/PMN-PT heterostructure[11]; (c) MoS2/P(VDF-TrFE)/SiO2/Si heterostructure[5].

    图 2  (a) PMN-PT未被极化时具有8个自发极化方向: r1+, r2+, r3+, r4+, r1, r2, r3, r4[12]; (b) PMN-PT(001)单晶的应变-电场曲线[13]; (c) 不同应变状态下, MoS2的光致发光谱[11]; (d) 不同外加电场下, PMN-PT(011)单晶的应变-电场曲线[15]

    Figure 2.  (a) The eight possible polarization directions for an unpoled PMN-PT single crystal: r1+, r2+, r3+, r4+, r1, r2, r3, r4[12]; (b) εxxE curves for PMN-PT(001) single crystals[13]; (c) photoluminescence spectra of the MoS2 under various strains[11]; (d) εxxE curves for PMN-PT(011) single crystals[15].

    图 3  (a) PMN-PT铁电单晶衬底的极化-电场(P-E)曲线, 及外加电场下石墨烯/PMN-PT铁电场效应晶体管的界面电荷效应示意图[16]; (b) 石墨烯/PMN-PT铁电场效应晶体管的IdsVg曲线[16]

    Figure 3.  (a) Polarization-Electric field (P-E) hysteresis loop of PMN-PT substrate, and schematic diagrams of interface charge effects in graphene/PMN-PT FeFET[16]; (b) the IdsVg curves of graphene on PMN-PT[16].

    图 4  (a) 石墨烯/PZT/STO异质结的示意图[20]; (b) 300 nm PZT上的多层石墨烯AFM图[21]; (c) 不同栅压走向下, 石墨烯/PZT FeFET的电阻率ρ随栅压Vg的变化曲线[21]

    Figure 4.  (a) Schematic of the graphene/PZT/STO heterostructure[20]; (b) AFM image of a multilayer graphene sheet on a 300 nm PZT film[21]; (c) the channel resistivity of graphene/PZT FeFET as a function of the gate voltage with different memory operation[21].

    图 5  (a) 机械剥离-石墨烯/PZT FeFET的IDS-VG曲线[23]; (b) CVD-石墨烯/PZT FeFET的IDS-VG曲线[23]; (c) VDS = 50 mV时, 石墨烯/PZT FeFET中的IDS-VG曲线[25]; (d) 不同栅压下, 真空和空气中分别测得的IDS-VG曲线[25]

    Figure 5.  (a) IDS-VG characteristics of the exfoliated-graphene/PZT FeFET[23]; (b) IDS-VG characteristics of the CVD-graphene/PZT FeFET[23]; (c) IDS-VG of the graphene/PZT FeFET under a drain voltage at 50 mV[25]; (d) drain current as a function of gate voltage of graphene/PZT FeFET in air and vacuum, respectively[25].

    图 6  (a) PZT处于不同极化状态时, 石墨烯/PZT的IDS-VG曲线[28]; (b) 在施加VG = –6 V和VG = 6 V的擦写电压后, 石墨烯/PZT FET分别处于“ON”态和“OFF”时的漏极电流随时间的变化曲线[28]; (c) 石墨烯/PZT FET结构示意图[29]; (d) 在PZT薄膜翻转为向上和向下的极化状态后, 分别在真空中放置250 s和24 h后测得的Id-VG曲线[29]

    Figure 6.  (a) Scheme of the electrical measurements of graphene/PZT FeFETs at different polarization state of PZT[28]; (b) after application of the write (VG = –6 V) or erase (VG = +6 V) voltages, the ON and OFF drain–source currents at the read voltage (VG = 0) and an auxiliary pulse (VG = –1.25 V) were measured as a function of time[28]; (c) schematic device structure of the graphene/PZT FeFET[29]; (d) Id-VG characteristics measured in vacuum 250 s and 24 h after switching for both the UP and DOWN polarization states[29].

    图 7  (a)对石墨烯/PMN-PT施加电场的示意图[33]; (b) 石墨烯的D, G, 2D和2D’峰位随面内应变的变化曲线[33]; (c) 石墨烯/PMN-PT异质结构示意图[34]; (d) 不同外场下PMN-PT(002)峰的XRD图[34]; (e) 不同外场下石墨烯的2D拉曼峰图[34]

    Figure 7.  (a) Schematic of the electro-mechanical device used to apply in-plane biaxial strain to the graphene[33]; (b) D, G, 2D and 2D’ peaks plotted as a function of the biaxial strain ε||[33]; (c) schematic of graphene/PMNPT heterostructure[34]; (d) the PMN-PT (002) peaks of XRD 2θ scanning patterns with different bias voltage[34]; (e) 2D peaks of graphene under different bias voltage[34].

    图 8  (a) 石墨烯/PMN-PT FeFET的Ids-Vg曲线[16]; (b) 石墨烯的载流子浓度随栅压的变化曲线[35]; (c) 石墨烯/h-BN/PMN-PT FET示意图[36]; (d) 不同栅压范围下的Ids-Vg曲线[36]

    Figure 8.  (a) The Ids-Vg curves of graphene on PMN-PT[16]; (b) charge carrier density of graphene on PMN-PT as a function of the gate voltage[35]; (c) schematic diagrams of the graphene/h-BN/PMN-PT FET[36]; (d) Ids-Vg curves of graphene at different gate-voltage sweep ranges[36].

    图 9  (a) 石墨烯/P(VDF-TrFE)的电位移D和P(VDF-TrFE)的电位移D’随外加电场的变化曲线[42]; (b) 石墨烯/P(VDF-TrFE)的电阻持久性能[43]; (c) 石墨烯/P(VDF-TrFE)柔性透明导电器件光学照片[44]; (d) 石墨烯/P(VDF-TrFE)的IsdItg随栅极电压的变化曲线[46]

    Figure 9.  (a) The electric displacement field D of the graphene/P(VDF-TrFE) FeFET and D’ of P(VDF-TrFE) thin film as a function of the applied electric field[42]; (b) the resistance endurance property of the graphene/P(VDF-TrFE) FeFET[43]; (c) optical image of the flexible transparent graphene/P(VDF-TrFE) FeFET device[44]; (d) Isd and Itg vs Vtg curves of the graphene/P(VDF-TrFE) FeFET[46].

    图 10  (a) 基于石墨烯/P(VDF-TrFE)/石墨烯复合结构的声压器件和测试回路照片[47]; (b) 基于石墨烯/P(VDF-TrFE)/石墨烯复合结构的声压驱动器和纳米发电机的示意图[47]; (c) 基于P(VDF-TrFE)/石墨烯复合结构的发电机和话筒的示意图和照片[48]; (d) 基于P(VDF-TrFE)/石墨烯复合结构的压力测试装置[49]; (e) 当被粘贴在手上时P(VDF-TrFE)/PMN-PT/GO薄膜的短路电流[51]; (f) 用PFM探针在GO/P(VDF-TrFE)上写入和读取数据的示意图[52]

    Figure 10.  (a) Photograph of the graphene/P(VDF-TrFE)/graphene based acoustic device and the measurement circuit[47]; (b) schematic depiction showing graphene/P(VDF-TrFE)/graphene-based device can work as an actuator as well as a nanogenerator[47]; (c) schematics and photograph of graphene/PVDF/graphene based generator and loudspeaker[48]; (d) photographic image of the pressure measurement setup showing the pressurized gas inlet, the sensor mounting, and the data acquisition system[49]; (e) short-circuit current of the P(VDF-TrFE)/PMN-PT/GO film when attached on the human hand[51]; (f) a schematic of data writing and reading on GO/P(VDF-TrFE) Multilayer film by a PFM tip[52].

    图 11  (a) 以PZT为背栅的MoS2 FET示意图[57]; (b) MoS2/PZT FET的转移特性曲线, 插图为存储窗口随最大扫描电压的变化曲线[57]; (c) 不同表面粗糙度的MoS2/PZT FET转移特性曲线[59]; (d) MoS2/PZT FET在不同温度下的转移特性曲线[61]

    Figure 11.  (a) Schematic diagram of the PZT back gated MoS2 FeFET[57]; (b) the transfer curves of MoS2/PZT FET. Memory window variation with increasing VG sweep range as shown in the inset[57]; (c) the transfer characteristics of MoS2 transistors fabricated on PZT films with different surface qualities[59]; (d) the Ids-Vgs curves of MoS2/PZT FETs under different temperatures rising from 300 to 380 K and Vgmax at 8 V[61].

    图 12  (a) 同一个MoS2/PZT FeFET在加栅压的同时和加栅压静置5 min后的IDS-VG曲线[63]; (b) 光照对FeFET器件开关持续能力的影响[63]; (c) 以向下的铁电畴为栅极的MoS2-PZT FeFET的PFM相位图[64]; (d) 不同数量导电通道的IDS-VDS曲线[64]

    Figure 12.  (a) IDS-VG characteristics for the same MoS2/PZT FeFET measured while VG was applied and 5 min after the corresponding gate voltages were applied, respectively[63]; (b) effect of light illumination on the retention properties of the FeFET[63]; (c) PFM phase images of a MoS2-PZT FeFET with one and three conductive paths gated by the domains with the downward polarization[64]; (d) IDS-VDS curves for different numbers of conductive paths[64].

    图 13  (a) 2D/PZT FeFET的结构示意图[65]; (b) PZT不同极化态对WSe2 PL光谱的影响[65]; (c, d) PZT不同极化态下, WSe2的PL发光分布图[65]; (e) PZT不同极化态下, WS2的PL发光分布图[66]; (f) PZT不同极化态下, WS2的PL光谱及拟合曲线[66]

    Figure 13.  (a) Device schematic of the 2D TMD/PZT heterostructure[65]; (b) effect of different polarization state for PZT on the PL spectra of WSe2[65]; (c, d) the maps of integrated PL intensity under down- and up-polarized states, respectively[64]; (e) PL peak intensity map obtained from the WS2 monolayer over a 30 × 30 μm2 area under different polarized states[66]; (f) raw PL spectra (solid black line) and fits (dashed green line) using two Lorentzians centered at 2.01 eV (red line) and 1.99 eV (blue line)[66].

    图 14  (a) MoS2/PMN-PT的结构示意图[11]; (b) 不同应力作用下MoS2的光致发光光谱[11]; (c) 不同应力作用下MoS2的能带示意图[11]; (d) PMN-PT/MoS2 FET的结构示意图[67]; (e) 无栅极电压时, PMN-PT/MoS2 FET在不同强度光照下的伏安特性曲线[67]; (f) PMN-PT/MoS2 FET的沟道电流随红外光照开/关的响应曲线[67]

    Figure 14.  (a) Schematic diagram of MoS2/PMN-PT composite[11]; (b) in-situ photoluminescence (PL) spectra of MoS2/PMN-PT composite under different strain states[11]; (c) calculated band structure of trilayer MoS2 as a function of the strain[11]; (d) schematic of MoS2/PMN-PT FET[67]; (e) IdsVds curves of MoS2/PMN-PT FET under different light illumination with gate voltage VG = 0 V[67]; (f) the time-resolved photocurrent in response to IR on/off at an irradiance of 6 mW/mm2[67].

    图 15  (a) 磁性、半导体性、压电性相互耦合示意图[68]; (b) MoS2基MIPG-FET的3D示意图[68]; (c) PMN-PT正向极化态下, MoS2基MIPG-FET对H = 33 mT的瞬态响应[68]; (d) PMN-PT负向极化态下, MoS2基MIPG-FET对H = 42 mT的瞬态响应[68]

    Figure 15.  (a) Schematic showing the three-phase coupling among magnetism, semiconductor, and piezoelectricity[68]; (b) 3D schematic illustration of an MoS2-based MIPG-FET[68]; (c) transient response of the MIPG-FET at H = 33 mT at Pr+ state[68]; (d) transient response of the MIPG-FET at H = 42 mT at Pr state[68].

    图 16  (a) MoS2基FET的3D模型图[69]; (b) 亚阈值摆幅和电导随沟道长度的变化曲线[73]; (c) 以P(VDF-TrFE)为顶栅的MoSe2基FeFET的3D模型图[74]; (b) MoSe2基FeFET在写入和擦除状态下的持久性能[74]

    Figure 16.  (a) Schematic 3D top-view of the MoS2-FET[69]; (b) Detailed plots of SS and gm as a function of Lch[73]; (c) 3D schematic diagram of the P(VDF-TrFE) top gated MoSe2 FeFET[74]; (d) retention performance of this device at the write and erase states[74].

    图 17  (a) P(VDF-TrFE)顶栅MoS2光电FET在光照下的3D模型图[75]; (b) P(VDF-TrFE)处于不同极化状态时, MoS2光电FET的光开关行为[75]; (c) 以P(VDF-TrFE)顶栅并中插HfO2薄膜的MoTe2光电FET示意图[77]; (d) 在黑暗及不同光照强度(520−1550 nm)下, In2Se3光电FET的伏安特性曲线[76]

    Figure 17.  (a) 3D schematic diagram of the P(VDF-TrFE) top gated MoS2 phtodetector with light beam[75]; (b) photoswitching behavior of ferroelectric polarization gating triple-layer MoS2 photodetector at three states[75]; (c) the schematic diagram of back-gate MoTe2 FET in which HfO2 of 30 nm is deposited on MoTe2 before coating P(VDF-TrFE) polymer[77]; (d) drain-source characteristics of the In2Se3 phtodetector in the dark and under different illuminating light wavelength (520−1550 nm)[76].

    图 18  (a) 单层薄膜在LiNbO3铁电畴上择优生长的光学照片和在单极化域上的双层[80]; (b) MoSe2和(c) WSe2的光致发光分布图[81]; (d) 在MoS2/BaTiO3/SrRuO3上的测试示意图[85]; (e−f) MoS2/BaTiO3/SrRuO3在紫外光照前后的PFM相图[85]

    Figure 18.  (a) The optical micrograph shows preferential growth of single-layer MoS2 on LiNbO3 domains[80]; PL mapping of exfoliated monolayer (b) MoSe2 and (c) WSe2 on a single polarized domain. The gold dashed line indicates one single dipole[81]; (d) a sketch of the experiment geometry in MoS2/BaTiO3/SrRuO3 junctions[85]; (e)−(f) PFM phase images of MoS2/BaTiO3/SrRuO3 junctions acquired in the dark before and after UV illumination[85].

    图 19  (a) PMN-PT衬底分别处于Pr+, Pr态时, CBS薄膜的电阻R随温度T的变化曲线, 插图: CBS薄膜的载流子浓度随温度T的变化曲线[92]; (b) PMN-PT衬底极化翻转引起的CBS薄膜费米能级移动的示意图[92]; (c) P(VDF-TrFE)/BP/MoS2/SiO2/Si结构FeFET示意图[94]; (d) 在BP/PZT/LNO/SiO2/Si结构的FeFET中光电存储原理图[95]; (e) 在BP/PZT/LNO/SiO2/Si结构存储器中的“电写光读”动态循环曲线[95]

    Figure 19.  (a) The resistance R as a function of the temperature T for the CBS films at Pr+ state and Pr state, respectively[92]; (b) schematic band diagrams of the Fermi level shift induced by polarization Switching[92]; (c) schematic of dual-gated P(VDF-TrFE)/BP/MoS2/SiO2/Si FeFET[94]; (d) schematic illustration of the photoelectric memory in FeFET with BP/PZT heterostructure fabricated on LNO/SiO2/Si substrate[95]; (e) dynamic cycles of the “electrical writing-optical reading” process of the BP/PZT/LNO/SiO2/Si memory[95]

    Baidu
  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768Google Scholar

    [3]

    Li L, Chen Z, Hu Y, Wang X W, Zhang T, Chen W, Wang Q B 2013 J. Am. Chem. Soc. 135 1213Google Scholar

    [4]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [5]

    Lü L, Zhuge F, Xie F, Xiong X J, Zhang Q F, Zhang N, Huang Y, Zhai T Y 2019 Nat. Commun. 10 3331Google Scholar

    [6]

    Eswaraiah V, Zeng Q S, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Topsakal M, Aktürk E, Ciraci S 2009 Phys. Rev. B 79 115442Google Scholar

    [9]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [10]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 9439Google Scholar

    [11]

    Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P 2013 ACS Nano 7 7126Google Scholar

    [12]

    Liu M, Nan T X, Hu J M, Zhao S S, Zhou Z, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q, Sun N X 2016 NPG Asia Mater. 8 e 31 6Google Scholar

    [13]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [14]

    Yang Y J, Yang M M, Luo Z L, Huang H, Wang H, Bao J, Hu C, Pan G, Yao Y, Liu Y, Li X G, Zhang S, Zhao Y G, Gao C 2012 Appl. Phys. Lett. 100 043506Google Scholar

    [15]

    Yan J M, Xu M, Chen T W, Yang M M, Liu F, Wang H, Guo L, Xu Z X, Fan F Y, Gao G Y, Dong S N, Li X G, Luo H S, Zhao W Y, Zheng R K 2019 Phys. Rev. Appl. 11 034037Google Scholar

    [16]

    Jie W J, Hui Y Y, Chan N Y, Zhang Y, Lau S P, Hao J H 2013 J. Phys. Chem. C 117 13747Google Scholar

    [17]

    Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stomer H L, Kim P 2007 Phys. Rev. Lett. 99 246803Google Scholar

    [18]

    Fratini S, Guinea F 2008 Phys. Rev. B 77 195415Google Scholar

    [19]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nat. Nanotech. 3 206Google Scholar

    [20]

    Hong X, Posadas A, Zou K, Ahn C H, Zhu J 2009 Phys. Rev. Lett. 102 136804Google Scholar

    [21]

    Hong X, Hoffman J, Posadas A, Zhu K, Ahn C H, Zhu J 2010 Appl. Phys. Lett. 97 033114Google Scholar

    [22]

    Zheng Y, Ni G X, Bae S, Cong C X, Kahya O, Toh C T, Kim H R, Im D, Yu T, Ahn J H, Hong B H, Özyimaz B 2011 Europhys. Lett. 93 17002Google Scholar

    [23]

    Song E B, Lian B, Kim S M, Lee S, Chung T K, Wang M, Zeng C, Xu G, Wong K, Zhou Y, Rasool H I, Seo D H, Chung H J, Heo J, Seo S, Wang K L 2011 Appl. Phys. Lett. 99 042109Google Scholar

    [24]

    Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotech. 24 475202Google Scholar

    [25]

    Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693Google Scholar

    [26]

    Zhang X W, Xie D, Xu J, Zhao H, Zhang C, Sun Y, Zhao Y, Feng T, Li G, Ren T 2014 12th IEEE International Conference on Solid-State and Intergrated Circuit Technology Guilin, China, Oct 28−31, 2014 p978

    [27]

    Zhang X W, Xie D, Xu J L, Zhang C, Sun Y L, Zhao Y F, Li X, Li X M, Zhu H W, Chen H M, Chang T C 2015 Carbon 93 384Google Scholar

    [28]

    Lipatov A, Fursina A, Vo T H, Sharma P, Gruverman A, Sinitskii A 2017 Adv. Electron. Mater. 3 1700020Google Scholar

    [29]

    Rogers S P, Xu R, Pandya S, Martin L W, Shim M 2017 J. Phys. Chem. C 121 7542Google Scholar

    [30]

    Fang B J, Ding C L, Wu J, Du Q B, Ding J N, Zhao X Y, Xu H Q, Luo H S 2012 Eur. Phys. J. Appl. Phys. 57 30101Google Scholar

    [31]

    Liu L, Li X, Wu X, Wang Y, Di W, Lin D, Zhao X, Luo H, Neumann N 2009 Appl. Phys. Lett. 95 192903Google Scholar

    [32]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [33]

    Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A, Schmidt O G 2012 Nano Lett. 10 3453Google Scholar

    [34]

    Jie W J, Hui Y Y, Zhang Y, Lau S P, Hao J H 2013 Appl. Phys. Lett. 102 223112Google Scholar

    [35]

    Jie W J, Hao J H 2018 Nanoscale 10 328Google Scholar

    [36]

    Park N, Kang H, Park J, Lee Y, Yun Y, Lee J H, Lee S G, Lee Y H, Suh D 2015 ACS Nano 9 10729Google Scholar

    [37]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651Google Scholar

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [39]

    Wang L, Luo J, Chen Y, Lin L, Huang X, Xue H, Gao J 2019 ACS Appl. Mater. Interface 11 17774Google Scholar

    [40]

    Zhao X, Papageorgiou D G, Zhu L Y, Ding F, Young R J 2019 Nanoscale 11 14339Google Scholar

    [41]

    Zhou M Q, Kang Z X, Zhu S M 2019 Nanotechnology 30 395701Google Scholar

    [42]

    Zheng Y, Ni G X, Toh C T, Zeng M G, Chen S T, Yao K, Özyilmaz B 2009 Appl. Phys. Lett. 94 163505Google Scholar

    [43]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [44]

    Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K, Özyilmaz B 2012 ACS Nano 6 3935Google Scholar

    [45]

    Wang X D, Tang M H, Chen Y, Wu G, Huang H, Zhao X, Tian B, Wang J, Sun S, Shen H, Lin T, Sun J, Meng X, Chu J 2016 Opt. Quant. Electron. 48 345Google Scholar

    [46]

    Wang X, Chen Y, Wu G, Wang J, Tian B, Sun S, Shen H, Lin T, Hu W, Kang T, Tang M, Xiao Y, Sun J, Meng X, Chu J 2018 Nanotechnology 29 134002Google Scholar

    [47]

    Bae S H, Kahya O, Sharma B K, Kwoon J, Cho H J, Özyilmaz B, Ahn J H 2013 ACS Nano 7 3130Google Scholar

    [48]

    Park S, Kim Y, Jung H, Park J Y, Lee N, Seo Y 2017 Sci. Rep. 7 17290Google Scholar

    [49]

    Kim S, Dong Y, Hossain M M, Gorman S, Towfeeq I, Gajula D, Childress A, Rao A M, Koley G 2019 ACS Appl. Mater. Interface 11 16006Google Scholar

    [50]

    Silibin M V, Bystrov V S, Karpinsky D V, Nasani N, Goncalves G, Gavrilin I M, Solnyshkin A V, Marques P A A P, Singh B, Bdikin 2017 Appl. Surf. Sci. 421 42Google Scholar

    [51]

    Yaqoob U, Iftekhar Uddin A S M, Chung G S 2018 Compos. Part B 136 92Google Scholar

    [52]

    Chen Y, Zhang L, Liu J, Lin X, Xu W, Yue Y, Shen Q D 2019 Carbon 144 15Google Scholar

    [53]

    Garain S, Jana S, Sinha T K, Mandal D 2016 ACS Appl. Mater. Interfaces 8 4532Google Scholar

    [54]

    Karan S K, Mandal D, Khatua B B 2015 Nanoscale 7 10655Google Scholar

    [55]

    Lu P, Wu X j, Guo W, Zeng X C 2012 Phys. Chem. Chem. Phys. 14 13035Google Scholar

    [56]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [57]

    Zhang X W, Xie D, Xu J L, Sun Y L, Li X, Zhang C, Dai R X, Zhao Y F, Li X M, Li X, Zhu H W 2015 IEEE Electron. Device Lett. 36 784Google Scholar

    [58]

    Zhou C J, Wang X S, Raju S, Lin Z Y, Villaroman D, Huang B L, Chan H L W, Chan M, Chai Y 2015 Nanoscale 7 8695Google Scholar

    [59]

    Lu Z Y, Serrao C, Khan A I, You L, Wong J C, Ye Y, Zhu H Y, Zhang X, Salahuddin S 2017 Appl. Phys. Lett. 111 023104Google Scholar

    [60]

    Ganapathi K L, Rath M, Rao M S R 2019 Semicond. Sci. Technol. 34 055016Google Scholar

    [61]

    Sun Y L, Xie D, Zhang X W, Xu J L, Li X M, Li X, Dai R X, Li X, Li P, Gao X S, Zhu H W 2017 Nanotechnology 28 045204Google Scholar

    [62]

    Li T, Gao L M, Xie H Q, Ye L Q, Yang W D, Liu Q L, Li K 2018 Mater. Res. Express 5 066308Google Scholar

    [63]

    Lipatov A, Sharma P, Gruverman A, Sinitskii A 2015 ACS Nano 9 8089Google Scholar

    [64]

    Lipatov A, Li T, Vorobeva N S, Sinitskii A, Gruverman A 2019 Nano Lett. 19 3194Google Scholar

    [65]

    Ko C, Lee Y, Chen Y, Suh J, Fu D, Suslu A, Lee S, Clarkson J D, Choe H S, Tongay S, Ramesh R, Wu J 2016 Adv. Mater. 28 2923Google Scholar

    [66]

    Li C H, McCreary K M, Jonker B T 2016 ACS Omega 1 1075Google Scholar

    [67]

    Fang H J, Lin Z Y, Wang X S, Tang C Y, Chen Y, Zhang F, Chai Y, Li Q, Yan Q F, Chan H L W, Dai J Y 2015 Opt. Express 23 251881Google Scholar

    [68]

    Liu Y D, Guo J M, Yu A F, Zhang Y, Kou J Z, Zhang K, Wen R M, Zhang Y, Zhai J Y, Wang Z L 2018 Adv. Mater. 30 1704524Google Scholar

    [69]

    Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S, Im S 2012 Small 8 3111Google Scholar

    [70]

    Radisavljevic B, Radnovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [71]

    Kobayashi T, Hori N, Nakajima T, Kawae T 2016 Appl. Phys. Lett. 108 132903Google Scholar

    [72]

    Liu L, Wang X D, Han L, Tian B, Chen Y, Wu G L, Li D, Yan M G, Wang T, Sun S, Shen H, Lin T, Sun J L, Duan C G, Wang J L, Meng X J, Chu J H 2017 AIP Adv. 7 065121Google Scholar

    [73]

    Liu X Q, Liang R R, Gao G Y, Pan C F, Jiang C S, Xu Q, Luo J, Zou X M, Yang Z Y, Liao L, Wang Z L 2018 Adv. Mater. 30 1800932Google Scholar

    [74]

    Wang X D, Liu C, Chen Y, Wu G J, Yan X, Huang H, Wang Peng, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Lin T, Hu W D, Tang M H, Zhou P, Wang J L, Sun J L, Meng X J, Chu J H, Li Z 2017 2 D Mater. 4 025036Google Scholar

    [75]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X, Guo N, Sun H S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [76]

    Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J, Zhang S T, Bian L, Sun J, Meng X, Chu J 2016 Nanotechnology 27 364002Google Scholar

    [77]

    Yin L, Wang Z X, Wang F, Xu K, Cheng R Q, Wen Y, Li J, He J 2017 Appl. Phys. Lett. 110 123106Google Scholar

    [78]

    Chen Y, Wang X D, Wang P, Huang H, Wu G J, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Wang J H, Hu W D, Sun J L, Meng X J, Chu J H 2016 ACS Appl. Mater. Interfaces 8 32083Google Scholar

    [79]

    Yin C, Wang X D, Chen Y, Li T, Sun S, Shen H, Du P, Sun J, Meng X, Chu J, Wong H F, Leung C W, Wang Z, Wang J 2018 Nanoscale 10 1727Google Scholar

    [80]

    Nguyen A, Sharma P, Scott T, Preciado E, Klee V, Sun D, Lu I H, Barroso D, Kim S, Shur V Y, Akhmatkhanov A R, Gryveman A, Bartels L, Dowben P A 2015 Nano Lett. 15 3364Google Scholar

    [81]

    Wen B, Zhu Y, Yudistira D, Boes A, Zhang L, Yidirim T, Liu B, Yan H, Sun X, Zhou Y, Xue Y, Zhang Y, Fu L, Mitchell A, Zhang H, Lu Y 2019 ACS Nano 13 5335Google Scholar

    [82]

    Jin H, Yoon W Y, Jo W 2017 Appl. Phys. Lett. 110 191601Google Scholar

    [83]

    Shin H W, Son J Y 2018 Electron. Mater. Lett. 14 59Google Scholar

    [84]

    Li T, Lipatov A, Lu H, Lee H, Lee J W, Torun E, Wirtz L, Eom C B, Íñigue J, Sinitskii A, Gruverman A 2018 Nat. Comm. 9 3344Google Scholar

    [85]

    Li T, Sharma P, Lipatov A, Lee H, Lee J W, Zhuravlev M Y, Paudel T R, Genenko Y A, Eom C B, Tsymbal E Y, Sinitskii A, Gruveman A 2017 Nano Lett. 17 922Google Scholar

    [86]

    Li Y, Sun X Y, Xu C Y, Cao J, Sun Z Y, Zhen L 2018 Nanoscale 10 23080Google Scholar

    [87]

    Shin H W, Son J Y 2019 J. Alloy. Compd. 792 673Google Scholar

    [88]

    Si M W, Liao P Y, Qiu G, Duan Y, Ye P D 2018 ACS Nano 12 6700Google Scholar

    [89]

    Si M W, Jiang C S, Chung W, Du Y C, Alam M A, Ye P D 2018 Nano Lett. 18 3682Google Scholar

    [90]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [91]

    Wang M, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [92]

    Zhao X W, Dong S N, Gao G Y, Xu Z X, Xu M, Yan J M, Zhao W Y, Liu Y K, Yan S Y, Zhang J X, Wang Y, Lu H Z, Li X G, Furdya J K, Luo H S, Zheng R K 2018 Quant. Mater. 3 52Google Scholar

    [93]

    Yan J M, Xu Z X, Chen T W, Xu M, Zhang C, Zhao X W, Liu F, Guo L, Yan S Y, Gao G Y, Wang F F, Zhang J X, Dong S N, Li X G, Luo H S, Zhao W, Zheng R K 2019 ACS Appl. Mater. Interfaces 11 9548Google Scholar

    [94]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Technol. 9 372Google Scholar

    [95]

    Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q, Lu Y 2014 ACS Nano 8 9590Google Scholar

    [96]

    Lee Y T, Kwoon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang H K, Im S 2015 ACS Nano 9 10394Google Scholar

    [97]

    Xie L, Chen X, Dong Z, Yu Q, Zhao X X, Yuan G L, Zeng Z M, Wang Y J, Zhang K 2019 Adv. Electron. Mater. 5 1900458Google Scholar

  • [1] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [2] Wu Ze-Fei, Huang Mei-Zhen, Wang Ning. Nonlinear Hall effects in two-dimensional moiré superlattices. Acta Physica Sinica, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [3] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [4] Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua. Research progress of bulk photovoltaic effect in two-dimensional materials. Acta Physica Sinica, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [5] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [6] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [7] Wang Ya-Xun, Guo Di, Li Jian-Gao, Zhang Dong-Bo. Engineering of properties of low-dimensional materials via inhomogeneous strain. Acta Physica Sinica, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [8] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [9] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [10] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [11] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [12] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [13] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [14] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [15] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [16] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [17] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [18] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [19] Xu Meng, Yan Jian-Min, Xu Zhi-Xue, Guo Lei, Zheng Ren-Kui, Li Xiao-Guang. Progresses of magnetoelectric composite films based on PbMg1/3Nb2/3O3-PbTiO3 single-crystal substrates. Acta Physica Sinica, 2018, 67(15): 157506. doi: 10.7498/aps.67.20180911
    [20] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
Metrics
  • Abstract views:  36263
  • PDF Downloads:  2598
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2019
  • Accepted Date:  01 November 2019
  • Available Online:  14 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回
Baidu
map