-
窄带光电探测系统在荧光检测、人工视觉等领域具有广泛应用. 为了实现对特殊波段的窄带光谱探测, 传统上需要将宽带探测器和光学滤波片集成. 但是, 随着检测技术的发展, 人们对探测系统的功耗、尺寸、成本等方面也提出了更高要求, 结构复杂、成本高的传统窄带光电探测器应用受到限制. 于是, 本文展示了一种基于多孔GaN/CuZnS异质结的无滤波、窄带近紫外光电探测器. 通过光电化学刻蚀和水浴生长方法, 分别制备了具有低缺陷密度的多孔GaN薄膜和高空穴电导率的CuZnS薄膜, 并构建了多孔GaN/CuZnS异质结近紫外光电探测器. 得益于GaN的多孔结构和CuZnS的光学滤波作用, 器件在–2 V偏压、370 nm紫外光照下, 光暗电流比超过4个数量级; 更重要的是, 器件具有超窄带近紫外光响应(半峰宽<8 nm, 峰值为370 nm). 此外, 该探测器的峰值响应度、外量子效率和比探测率分别达到了0.41 A/W, 138.6%和9.8×1012 Jones. 这些优异的器件性能显示了基于多孔GaN/CuZnS异质结的近紫外探测器在窄光谱紫外检测领域具有广阔的应用前景.Narrowband photodetection systems are widely used in fluorescence detection, artificial vision and other fields. In order to realize the narrow spectral detection of special band, it is traditionally necessary to integrate broadband detectors with optical filters. However, with the development of detection technology, higher requirements have also been placed on the power consumption, size, and cost of the detection system, and the applications of traditional narrowband photodetectors with complex structures and high costs are limited. Thus, a filterless, narrowband near-ultraviolet photodetector based on a porous GaN/CuZnS heterojunction is demonstrated. The porous GaN thin films with low defect density and CuZnS thin films with high hole conductivity are fabricated by photoelectrochemical etching and water bath growth methods, respectively, and the porous GaN/CuZnS heterojunction near-ultraviolet photodetectors are thus fabricated. Benefiting from the porous structure of GaN and the optical filtering effect of CuZnS, the photo-dark current ratio of the device exceeds four orders of magnitudes under –2 V bias and 370 nm light illumination; more importantly, the device has an ultra-narrowband near-ultraviolet photoresponse with a full width at half maximum of <8 nm (peak at 370 nm). In addition, the peak responsivity, external quantum efficiency and specific detectivity reach 0.41 A/W, 138.6% and 9.8×1012 Jones, respectively. These excellent device performances show that the near-ultraviolet photodetectors based on porous GaN/CuZnS heterojunctions have broad application prospects in the field of narrow-spectrum ultraviolet photodetection.
-
Keywords:
- ultraviolet photodetector /
- heterojunction /
- porous GaN /
- narrowband response
[1] Wang T, Liang H, Han Z, Sui Y, Mei Z 2021 Adv. Mater. Technol. 6 2000945Google Scholar
[2] Wang S, Wu C, Wu F, Zhang F, Liu A, Zhao N, Guo D 2021 Sens. Actuators, A 330 112870Google Scholar
[3] Qiu M, Sun P, Liu Y, Huang Q, Zhao C, Li Z, Mai W 2018 Adv. Mater. Technol. 3 1700288Google Scholar
[4] Kim M, Seo J H, Singisetti U, Ma Z 2017 J. Mater. Chem. C 5 8338Google Scholar
[5] Li L, Liu Z, Wang L, Zhang B, Liu Y, Ao J P 2018 Mater. Sci. Semicond. Process. 76 61Google Scholar
[6] Zhou H, Gui P, Yu Q, Mei J, Wang H, Fang G 2015 J. Mater. Chem. C 3 990Google Scholar
[7] Song W, Chen J, Li Z, Fang X 2021 Adv. Mater. 33 2101059Google Scholar
[8] Wang Y, Wu C, Guo D, Li P, Wang S, Liu A, Li C, Wu F, Tang W 2020 ACS. Appl. Electron. Mater. 2 2032Google Scholar
[9] Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhao D X, Shen D Z, Fan X W 2008 J. Phys. Chem. C 112 20546Google Scholar
[10] Ni P N, Shan C X, Wang S P, Liu X Y, Shen D Z 2013 J. Mater. Chem. C 1 4445Google Scholar
[11] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍 2021 70 128502Google Scholar
Wang S L, Wang Y C, Guo D Y, Li C R, Liu A P 2021 Acta Phys. Sin. 70 128502Google Scholar
[12] Gui P, Li J, Zheng X, Wang H, Yao F, Hu X, Liu Y, Fang G 2020 J. Mater. Chem. C 8 6804Google Scholar
[13] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar
[14] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚 2015 64 067802Google Scholar
Pei J N, Jiang D Y, Tian C G, Guo Z X, Liu R S, Sun L, Qin J M, Hou J H, Zhao J X, Liang Q C, Gao S 2015 Acta Phys. Sin. 64 067802Google Scholar
[15] Sarkar K, Kumar P 2021 Appl. Surf. Sci. 566 150695Google Scholar
[16] Yang C, Xi X, Yu Z, Cao H, Li J, Lin S, Ma Z, Zhao L 2018 ACS Appl. Mater. Interfaces 10 5492Google Scholar
[17] Calahorra Y, Spiridon B, Wineman A, Busolo T, Griffin P, Szewczyk P K, Zhu T, Jing Q, Oliver R, Kar-Narayan S 2020 Appl. Mater. Today 21 100858Google Scholar
[18] Xiao Y, Liu L, Ma Z H, Meng B, Qin S J, Pan G B 2019 Nanomaterials 9 1198Google Scholar
[19] Yu R, Wang G, Shao Y, Wu Y, Wang S, Lian G, Zhang B, Hu H, Liu L, Zhang L, Hao X 2019 J. Mater. Chem. C 7 14116Google Scholar
[20] Li J, Xi X, Lin S, Ma Z, Li X, Zhao L 2020 ACS Appl. Mater. Interfaces 12 11965Google Scholar
[21] Li J, Xi X, Li X, Lin S, Ma Z, Xiu H, Zhao L 2022 Adv. Opt. Mater. 8 1902162Google Scholar
[22] Li Q, Liu G, Yu J, Wang G, Wang S, Cheng T, Chen C, Liu L, Yang J, Xu X, Zhang L 2022 J. Mater. Chem. C 10 8321Google Scholar
[23] Huang Z, Liu J, Zhang T, Jin Y, Wang J, Fan S, Li Q 2021 ACS Appl. Mater. Interfaces 13 22796Google Scholar
[24] Hu J, Yang S, Zhang Z, Li H, Perumal Veeramalai C, Sulaman M, Saleem M I, Tang Y, Jiang Y, Tang L, Zou B 2021 J. Mater. Sci. Technol. 68 216Google Scholar
[25] Rajamani S, Arora K, Konakov A, Belov A, Korolev D, Nikolskaya A, Mikhaylov A, Surodin S, Kryukov R, Nikolitchev D, Sushkov A, Pavlov D, Tetelbaum D, Kumar M, Kumar M 2018 Nanotechnology 29 305603Google Scholar
[26] Lan Z, Lau Y S, Wang Y, Xiao Z, Ding L, Luo D, Zhu F 2020 Adv. Opt. Mater. 8 2001388Google Scholar
[27] Qin Z, Song D, Xu Z, Qiao B, Huang D, Zhao S 2020 Org. Electron. 76 105417Google Scholar
[28] Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X, Wang G, Zheng S, Yang S 2021 Adv. Mater. 33 2005557Google Scholar
[29] Li J, Yang C, Liu L, Cao H, Lin S, Xi X, Li X, Ma Z, Wang K, Patanè A, Zhao L 2020 Adv. Opt. Mater. 8 1901276Google Scholar
[30] Guo Y, Song W, Liu Q, Sun Y, Chen Z, He X, Zeng Q, Luo X, Zhang R, Li S 2022 J. Mater. Chem. C 10 5116Google Scholar
[31] Wang X, Pan Y, Xu Y, Zhao J, Li Y, Li Q, Chen J, Zhao Z, Zhang X, Elemike E E, Onwudiwe D C, Bae B S, Lei W 2022 Adv. Electron. Mater. 8 2200178Google Scholar
[32] Guo H, Jiang L, Huang K, Wang R, Liu S, Li Z, Rong X, Dong G 2021 Org. Electron. 92 106122Google Scholar
[33] Zhang Y, Song W 2021 J. Mater. Chem. C 9 4799Google Scholar
[34] Zhang Y, Xu X, Fang X 2019 InfoMat 1 542Google Scholar
[35] Davis E A, Mott N F 1970 Philos. Mag. 22 0903Google Scholar
[36] Zheng Y, Li Y, Tang X, Wang W, Li G 2020 Adv. Opt. Mater. 8 2000197Google Scholar
[37] Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J 2016 Nanoscale 8 12990Google Scholar
[38] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[39] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 70 238502Google Scholar
Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar
[40] Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar
[41] Zheng L, Hu K, Teng F, Fang X 2017 Small 13 1602448Google Scholar
[42] Song W, Wang X, Xia C, Wang R, Zhao L, Guo D, Chen H, Xiao J, Su S, Li S 2017 Nano Energy 33 272Google Scholar
[43] Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar
[44] Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z, Lee S-T 2015 Adv. Funct. Mater. 25 2910Google Scholar
[45] Li L, Deng Y, Bao C, Fang Y, Wei H, Tang S, Zhang F, Huang J 2017 Adv. Opt. Mater. 5 1700672Google Scholar
[46] Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar
[47] Shen L, Fang Y, Wei H, Yuan Y, Huang J 2016 Adv. Mater. 28 2043Google Scholar
[48] Li W, Li D, Dong G, Duan L, Sun J, Zhang D, Wang L 2016 Laser Photonics Rev. 10 473Google Scholar
[49] Zhang Y, Xu J, Shi S, Gao Y, Wang C, Zhang X, Yin S, Li L 2016 ACS Appl. Mater. Interfaces 8 22647Google Scholar
[50] Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X 2019 J Phys Chem Lett 10 6850Google Scholar
[51] Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L, Fang X 2012 Adv. Mater. 24 2305Google Scholar
-
图 2 (a)多孔GaN薄膜和CuZnS薄膜的反射率图谱; (b) CuZnS薄膜的衍射图谱; 多孔GaN薄膜和(c)多孔GaN、CuZnS薄膜以及异质结的紫外-可见吸收光谱(插图为CuZnS的Tauc图)
Fig. 2. (a) Reflectance patterns of porous GaN and CuZnS films; (b) XRD patterns of CuZnS films; (c) UV-vis absorption spectrum of porous GaN, CuZnS films and GaN/CuZnS heterojunction; inset in (c) shows the Tauc plot of the CuZnS films.
图 3 (a)多孔GaN/CuZnS异质结器件的I-V特性曲线(插图为多孔GaN/CuZnS异质结器件结构示意图); (b) CuZnS器件和(c)多孔GaN器件的I-V特性曲线, (b)和(c)中的插图分别显示了器件在370 nm光开关周期下的I-t曲线和相应的器件结构
Fig. 3. I-V characteristics of the (a) porous GaN/CuZnS heterojunction PD, inset in (a) shows the schematic illustration of the porous GaN/CuZnS structure; I-V characteristics of the (b) CuZnS PD devices and (c) porous GaN PD, insets in (b) and (c) show the I-t curves under switching 370 nm light illumination and corresponding device structures, respectively.
图 4 不同刻蚀电压(V = 10, 15, 25 V)所制备的光电探测器的(a)光电流及光暗电流比、(b)响应度、(c)比探测率, 图(c)插图为器件的外量子效率
Fig. 4. (a) Photocurrent and light-to-dark ratio, (b) responsivity and (c) specific detectivity of PDs prepared for different etching voltages (V = 10, 15, 25 V); inset in (c) shows the external quantum efficiency of PDs.
图 5 (a)不同强度的370 nm光照下多孔GaN/CuZnS异质结光电探测器的I-V特性; (b)光强和光电流相应的线性拟合曲线; (c)响应度和比探测率随光强变化; (d)多孔GaN/CuZnS异质结的能带示意图
Fig. 5. (a) Light intensity dependent I-V characteristics of porous GaN/CuZnS heterojunction PD under 370 nm light illumination; (b) light intensity dependent photocurrent and the corresponding linear fitting curve; (c) responsivity and detectivity as a function of light intensity; (d) the schematic energy band diagram of the porous GaN/CuZnS heterojunction.
表 1 CuZnS薄膜和多孔GaN的霍尔效应测试数据
Table 1. Hall-effect test data of CuZnS films and porous GaN.
Sample Temp./K Bulk Con./cm–3 Resistivity/(Ω·cm) Conductivity/
(Ω·cm)–1Mobility/
(cm2·(V·s)–1)CuZnS 295 5.24×1018 0.324 3.08 36.7 Porous GaN 295 1.39×1017 0.127 7.89 355 表 2 无滤波器、窄带PD的典型参数比较
Table 2. Comparison of typical parameters of filter-free, narrowband PDs.
Active materials Peak wavelength/
nmFWHM/nm Bias/V EQE/% R/
(mA·W–1)D*/
JonesOn/off ratio Ref. PC71BM:PbS 890 50 –7 183 1310 8.0×1011 ~104 [37] Hybrid perovskite 780 28 0 12.1 76 2.65×1012 – [45] P3HT:PC71BM 650 29 –10 49.0 255 1.3×1011 ~102 [46] P3HT:PCBM:CdTe 660 80 –6 ~200 ~1064 7.3×1011 ~104 [47] Organic ISQ 680 80 –2 15.0 82.3 3.2×1012 1.8×103 [48] p-NiO/n-ZnO 380 30 0 0.5 1.4 — — [49] Porous GaN/CuZnS 370 8 –2 136.8 413.7 9.8×1012 >104 This work -
[1] Wang T, Liang H, Han Z, Sui Y, Mei Z 2021 Adv. Mater. Technol. 6 2000945Google Scholar
[2] Wang S, Wu C, Wu F, Zhang F, Liu A, Zhao N, Guo D 2021 Sens. Actuators, A 330 112870Google Scholar
[3] Qiu M, Sun P, Liu Y, Huang Q, Zhao C, Li Z, Mai W 2018 Adv. Mater. Technol. 3 1700288Google Scholar
[4] Kim M, Seo J H, Singisetti U, Ma Z 2017 J. Mater. Chem. C 5 8338Google Scholar
[5] Li L, Liu Z, Wang L, Zhang B, Liu Y, Ao J P 2018 Mater. Sci. Semicond. Process. 76 61Google Scholar
[6] Zhou H, Gui P, Yu Q, Mei J, Wang H, Fang G 2015 J. Mater. Chem. C 3 990Google Scholar
[7] Song W, Chen J, Li Z, Fang X 2021 Adv. Mater. 33 2101059Google Scholar
[8] Wang Y, Wu C, Guo D, Li P, Wang S, Liu A, Li C, Wu F, Tang W 2020 ACS. Appl. Electron. Mater. 2 2032Google Scholar
[9] Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhao D X, Shen D Z, Fan X W 2008 J. Phys. Chem. C 112 20546Google Scholar
[10] Ni P N, Shan C X, Wang S P, Liu X Y, Shen D Z 2013 J. Mater. Chem. C 1 4445Google Scholar
[11] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍 2021 70 128502Google Scholar
Wang S L, Wang Y C, Guo D Y, Li C R, Liu A P 2021 Acta Phys. Sin. 70 128502Google Scholar
[12] Gui P, Li J, Zheng X, Wang H, Yao F, Hu X, Liu Y, Fang G 2020 J. Mater. Chem. C 8 6804Google Scholar
[13] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar
[14] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚 2015 64 067802Google Scholar
Pei J N, Jiang D Y, Tian C G, Guo Z X, Liu R S, Sun L, Qin J M, Hou J H, Zhao J X, Liang Q C, Gao S 2015 Acta Phys. Sin. 64 067802Google Scholar
[15] Sarkar K, Kumar P 2021 Appl. Surf. Sci. 566 150695Google Scholar
[16] Yang C, Xi X, Yu Z, Cao H, Li J, Lin S, Ma Z, Zhao L 2018 ACS Appl. Mater. Interfaces 10 5492Google Scholar
[17] Calahorra Y, Spiridon B, Wineman A, Busolo T, Griffin P, Szewczyk P K, Zhu T, Jing Q, Oliver R, Kar-Narayan S 2020 Appl. Mater. Today 21 100858Google Scholar
[18] Xiao Y, Liu L, Ma Z H, Meng B, Qin S J, Pan G B 2019 Nanomaterials 9 1198Google Scholar
[19] Yu R, Wang G, Shao Y, Wu Y, Wang S, Lian G, Zhang B, Hu H, Liu L, Zhang L, Hao X 2019 J. Mater. Chem. C 7 14116Google Scholar
[20] Li J, Xi X, Lin S, Ma Z, Li X, Zhao L 2020 ACS Appl. Mater. Interfaces 12 11965Google Scholar
[21] Li J, Xi X, Li X, Lin S, Ma Z, Xiu H, Zhao L 2022 Adv. Opt. Mater. 8 1902162Google Scholar
[22] Li Q, Liu G, Yu J, Wang G, Wang S, Cheng T, Chen C, Liu L, Yang J, Xu X, Zhang L 2022 J. Mater. Chem. C 10 8321Google Scholar
[23] Huang Z, Liu J, Zhang T, Jin Y, Wang J, Fan S, Li Q 2021 ACS Appl. Mater. Interfaces 13 22796Google Scholar
[24] Hu J, Yang S, Zhang Z, Li H, Perumal Veeramalai C, Sulaman M, Saleem M I, Tang Y, Jiang Y, Tang L, Zou B 2021 J. Mater. Sci. Technol. 68 216Google Scholar
[25] Rajamani S, Arora K, Konakov A, Belov A, Korolev D, Nikolskaya A, Mikhaylov A, Surodin S, Kryukov R, Nikolitchev D, Sushkov A, Pavlov D, Tetelbaum D, Kumar M, Kumar M 2018 Nanotechnology 29 305603Google Scholar
[26] Lan Z, Lau Y S, Wang Y, Xiao Z, Ding L, Luo D, Zhu F 2020 Adv. Opt. Mater. 8 2001388Google Scholar
[27] Qin Z, Song D, Xu Z, Qiao B, Huang D, Zhao S 2020 Org. Electron. 76 105417Google Scholar
[28] Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X, Wang G, Zheng S, Yang S 2021 Adv. Mater. 33 2005557Google Scholar
[29] Li J, Yang C, Liu L, Cao H, Lin S, Xi X, Li X, Ma Z, Wang K, Patanè A, Zhao L 2020 Adv. Opt. Mater. 8 1901276Google Scholar
[30] Guo Y, Song W, Liu Q, Sun Y, Chen Z, He X, Zeng Q, Luo X, Zhang R, Li S 2022 J. Mater. Chem. C 10 5116Google Scholar
[31] Wang X, Pan Y, Xu Y, Zhao J, Li Y, Li Q, Chen J, Zhao Z, Zhang X, Elemike E E, Onwudiwe D C, Bae B S, Lei W 2022 Adv. Electron. Mater. 8 2200178Google Scholar
[32] Guo H, Jiang L, Huang K, Wang R, Liu S, Li Z, Rong X, Dong G 2021 Org. Electron. 92 106122Google Scholar
[33] Zhang Y, Song W 2021 J. Mater. Chem. C 9 4799Google Scholar
[34] Zhang Y, Xu X, Fang X 2019 InfoMat 1 542Google Scholar
[35] Davis E A, Mott N F 1970 Philos. Mag. 22 0903Google Scholar
[36] Zheng Y, Li Y, Tang X, Wang W, Li G 2020 Adv. Opt. Mater. 8 2000197Google Scholar
[37] Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J 2016 Nanoscale 8 12990Google Scholar
[38] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[39] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 70 238502Google Scholar
Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar
[40] Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar
[41] Zheng L, Hu K, Teng F, Fang X 2017 Small 13 1602448Google Scholar
[42] Song W, Wang X, Xia C, Wang R, Zhao L, Guo D, Chen H, Xiao J, Su S, Li S 2017 Nano Energy 33 272Google Scholar
[43] Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar
[44] Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z, Lee S-T 2015 Adv. Funct. Mater. 25 2910Google Scholar
[45] Li L, Deng Y, Bao C, Fang Y, Wei H, Tang S, Zhang F, Huang J 2017 Adv. Opt. Mater. 5 1700672Google Scholar
[46] Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar
[47] Shen L, Fang Y, Wei H, Yuan Y, Huang J 2016 Adv. Mater. 28 2043Google Scholar
[48] Li W, Li D, Dong G, Duan L, Sun J, Zhang D, Wang L 2016 Laser Photonics Rev. 10 473Google Scholar
[49] Zhang Y, Xu J, Shi S, Gao Y, Wang C, Zhang X, Yin S, Li L 2016 ACS Appl. Mater. Interfaces 8 22647Google Scholar
[50] Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X 2019 J Phys Chem Lett 10 6850Google Scholar
[51] Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L, Fang X 2012 Adv. Mater. 24 2305Google Scholar
计量
- 文章访问数: 5713
- PDF下载量: 173
- 被引次数: 0