Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Establishing of quantum entanglement among three atomic nodes via spontanenous Raman scattering

Liu Yan-Hong Zhou Yao-Yao Yan Zhi-Hui Jia Xiao-Jun

Citation:

Establishing of quantum entanglement among three atomic nodes via spontanenous Raman scattering

Liu Yan-Hong, Zhou Yao-Yao, Yan Zhi-Hui, Jia Xiao-Jun
PDF
HTML
Get Citation
  • Quantum entanglement is an essential quantum resource. With the development of quantum information science, quantum network consisting of quantum nodes and quantum channels has attracted extensive attention. The development of quantum information network requires the capability of generating, storing and distributing quantum entanglement among multiple quantum nodes. It is significant to construct the quantum information, and it has very important applications in the distributed quantum computation and quantum internet. Here we propose a simple and feasible scheme to deterministically entangle three distant atomic ensembles via the interference and feedforward network of the light-atom mixed entanglement. Firstly, three atomic ensembles placed at three remote nodes in a quantum network are prepared into the mixed entangled state of light and atomic ensembles via the spontaneous Raman scattering (SRS) process. Then, the first and second Stokes optical field are interfered on an R1T1 optical beam splitter (BS1), and one of the output optical fields from the first optical beam splitter is interfered with the third Stokes field on the second R2T2 optical beam splitter (BS2). The quantum fluctuations of the amplitude and phase quadratures of these three output optical fields from BS1 and BS2 are detected by three sets of balanced homodyne detectors, respectively. Finally, the detected signals of the amplitude and phase quadratures are fed to the three atomic ensembles via the radio frequency coils to establish the entanglement among three remote atomic ensembles. At the user-controlled time, three read optical pulses can be applied to these three atomic ensembles to convert the stored entangled state from the atomic spin waves into the anti-Stokes optical fields via the SRS process. According to the tripartite inseparability criterion, the correlation variance combinations of these three anti-Stokes optical fields can be used to verify the performance of entanglement of three atomic ensembles. This scheme can be extended to larger-scale quantum information network with different physical systems and more atomic nodes. Moreover, the entanglement distillation can be combined with this scheme to realize the entanglement among longer distance quantum nodes.
      Corresponding author: Liu Yan-Hong, 15135111277@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 61775127, 61925503, 11904218, 11804246, 12004276), the Scientific and Technological Programs of Higher Education Institutions in Shanxi, China (Grant No. 2020L0516), the Program for Sanjin Scholars of Shanxi Province, China, the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, the Fund for Shanxi “1331Project” Key Subjects Construction, China, and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D111293)
    [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [3]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [4]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [5]

    Parigi V, D'Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [6]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [7]

    邓瑞婕, 闫智辉, 贾晓军 2017 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [8]

    刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀 2019 68 034202Google Scholar

    Liu Y H, Wu L, Yan Z H, Jia X J, Peng K C 2019 Acta Phys. Sin. 68 034202Google Scholar

    [9]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [10]

    闫妍, 李淑静, 田龙, 王海 2016 65 014205Google Scholar

    Yan Y, Li S J, Tian L, Wang H 2016 Acta Phys. Sin. 65 014205Google Scholar

    [11]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [12]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [13]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005 Phys. Rev. Lett. 95 060502Google Scholar

    [14]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [15]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2015 Nature Phys. 11 37Google Scholar

    [16]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [17]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [18]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [19]

    Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [20]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [21]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [22]

    Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H, Schoelkopf R J 2018 Nature Phys. 14 705Google Scholar

    [23]

    Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264Google Scholar

    [24]

    Clausen C, Usmani I, Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Gisin N 2011 Nature 469 508Google Scholar

    [25]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [26]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [27]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [28]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [29]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [30]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [31]

    Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Upho M, Mücke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [32]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [33]

    Usmani I, Clausen C, Bussières F, Sangouard N, Afzelius M, Gisin N 2012 Nature Photon. 6 234Google Scholar

    [34]

    Pfaff W, Hensen B J, Bernien H, van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J, Hanson R 2014 Science 345 532Google Scholar

    [35]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [36]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar

    [37]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [38]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nature Photon. 13 210Google Scholar

    [41]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [42]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [43]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [44]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [45]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [46]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [47]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar

    [48]

    Maring N, Farrera P, Kutluer K, Mazzera M, Heinze G, de Riedmatten H 2017 Nature 551 485Google Scholar

  • 图 1  三个原子系综确定性纠缠产生原理图

    Figure 1.  Schematic diagram of deterministic entanglement generation among three atomic ensembles.

    图 2  原子系综关联方差之和E1, E2, E3随光学分束片BS2的反射率R2的变化曲线 (a), (c), (e) BS1的反射率${R_1} = 0.1,\; 0.2,\; $$ 0.3,\; 0.5$; (b), (d), (f) BS1的反射率${R_1} = 0.5, {{0}}{{.7, 0}}{{.9}}$

    Figure 2.  Dependence of the correlation variance combinations of atomic ensembles E1, E2, E3 on the reflectivity R2 of the second optical beam splitter BS2: (a), (c), (e) Reflectivity ${R_1} = 0.1,\; 0.2,\; 0.3, \;0.5$ of BS1; (b), (d), (f) reflectivity ${R_1} = 0.5, 0.7, 0.9$ of BS1.

    图 3  原子系综关联方差之和E1, E2, E3与前馈增益因子${g_2}$的变化曲线 (a) ${g_1} = 0.7, \;0.{8},\; 0.9, \;1.{{0}}$时, E1的变化曲线; (b) ${g_3} = 0.{{7}},\; 0.{8},\; {{0}}{{.9}},\; 1.{{0}}$时, E3曲线; (c) ${g_1} = 0.{{7}},\; $$ 0.{8},\; {{0}}{{.9}},\; 1.{{0}}$时, E2的变化

    Figure 3.  Correlation variance combinations E1, E2 and E3 versus the feedforward gain factor ${g_2}$: (a) The correlation variance combination E1 versus ${g_2}$ when ${g_1} = 0.{{7}},\; $$ 0.{8}, \;{{0}}{{.9}},\; 1.{{0}}$; (b) the correlation variance combinations E3 versus ${g_2}$ when ${g_3} = 0.{{7}},\; 0.{8}, \;{{0}}{{.9}},\; 1.{{0}}$; (c) the correlation variance combinations E2 versus ${g_2}$ when ${g_{1}} = 0.{{7}},\; 0.{8}, $$ {{0}}{{.9}},\; 1.{{0}}$.

    Baidu
  • [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [3]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [4]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [5]

    Parigi V, D'Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [6]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [7]

    邓瑞婕, 闫智辉, 贾晓军 2017 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [8]

    刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀 2019 68 034202Google Scholar

    Liu Y H, Wu L, Yan Z H, Jia X J, Peng K C 2019 Acta Phys. Sin. 68 034202Google Scholar

    [9]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [10]

    闫妍, 李淑静, 田龙, 王海 2016 65 014205Google Scholar

    Yan Y, Li S J, Tian L, Wang H 2016 Acta Phys. Sin. 65 014205Google Scholar

    [11]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [12]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [13]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005 Phys. Rev. Lett. 95 060502Google Scholar

    [14]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [15]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2015 Nature Phys. 11 37Google Scholar

    [16]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [17]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [18]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [19]

    Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [20]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [21]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [22]

    Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H, Schoelkopf R J 2018 Nature Phys. 14 705Google Scholar

    [23]

    Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264Google Scholar

    [24]

    Clausen C, Usmani I, Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Gisin N 2011 Nature 469 508Google Scholar

    [25]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [26]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [27]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [28]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [29]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [30]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [31]

    Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Upho M, Mücke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [32]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [33]

    Usmani I, Clausen C, Bussières F, Sangouard N, Afzelius M, Gisin N 2012 Nature Photon. 6 234Google Scholar

    [34]

    Pfaff W, Hensen B J, Bernien H, van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J, Hanson R 2014 Science 345 532Google Scholar

    [35]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [36]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar

    [37]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [38]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nature Photon. 13 210Google Scholar

    [41]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [42]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [43]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [44]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [45]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [46]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [47]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar

    [48]

    Maring N, Farrera P, Kutluer K, Mazzera M, Heinze G, de Riedmatten H 2017 Nature 551 485Google Scholar

  • [1] Wang Yan-Fei, Zhu Xi-Ming, Zhang Ming-Zhi, Meng Sheng-Feng, Jia Jun-Wei, Chai Hao, Wang Yang, Ning Zhong-Xi. Plasma optical emission spectroscopy based on feedforward neural network. Acta Physica Sinica, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [2] Yuan Liang, Wen Ya-Fei, Li Ya, Liu Chao, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai. Optical cavity enhancement experiment of Duan-Lukin-Cirac-Zoller writing excitation process in atomic ensemble. Acta Physica Sinica, 2021, 70(7): 070302. doi: 10.7498/aps.70.20201394
    [3] Sun Ying-Lu, Duan Yan-Min, Cheng Meng-Yao, Yuan Xian-Zhang, Zhang Li, Zhang Dong, Zhu Hai-Yong. Triple wavelength-switchable lasing in yellow-green based on frequency mixing of self-Raman operation. Acta Physica Sinica, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [4] Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng. Resonant Multi-phonon Raman scattering of black phosphorus. Acta Physica Sinica, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [5] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [6] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [7] Wang Sheng-Zhi, Wen Ya-Fei, Zhang Chang-Rui, Wang Deng-Xin, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai. Dependence of performance character of photon-atom entanglement source on retrieval efficiency. Acta Physica Sinica, 2019, 68(2): 020301. doi: 10.7498/aps.68.20181314
    [8] Li Bin, Luo Shi-Wen, Yu An-Lan, Xiong Dong-Sheng, Wang Xin-Bing, Zuo Du-Luo. Confocal-cavity-enhanced Raman scattering of ambient air. Acta Physica Sinica, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [9] Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua. Raman gain of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [10] Dong Fu-Tong, Wang Fei-Lu, Zhong Jia-Yong, Zhao Gang. Research on the opacity of Fe M-shell unresolved transition array. Acta Physica Sinica, 2012, 61(16): 163201. doi: 10.7498/aps.61.163201
    [11] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [12] Han Ru, Yang Yin-Tang, Chai Chang-Chun. Electronic Raman scattering and the second-order Raman spectra of the n-type SiC. Acta Physica Sinica, 2008, 57(5): 3182-3187. doi: 10.7498/aps.57.3182
    [13] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [14] Cheng Ze. Unified quantum field theory of Raman scattering of light in piezoelectric crystals. Acta Physica Sinica, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [15] Zhang Ji-Cai, Dai Lun, Qin Guo-Gang, Ying Li-Zhen, Zhao Xin-Sheng. . Acta Physica Sinica, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [16] HUANG SHI-HUA, MO YU-DONG. RESONANT RAMAN SCATTERING OF Hg1-xCdxTe . Acta Physica Sinica, 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
    [17] Chen Yong-qing. Indecomposable and Irreducible Representations of the SPL(2,1) Superal gebra. Acta Physica Sinica, 2000, 49(1): 5-10. doi: 10.7498/aps.49.5
    [18] REN MENG-MEI, JIANG WEI-LIN, ZHU PEI-RAN. COMPOSITION ANALYSIS AND OXYGEN CONTENT DETERMINATION OF HIGH T SUPERCONDUCTING FILMS BY RBS AND EBS METHODS. Acta Physica Sinica, 1994, 43(2): 340-344. doi: 10.7498/aps.43.340
    [19] ZHANG FU-GENG. THE FORWARD RAMAN SCATTERING OF CIRCULARLY POLARIZED KrF EXCIMER LASER BEAM IN HYDROGEN GAS. Acta Physica Sinica, 1983, 32(9): 1211-1214. doi: 10.7498/aps.32.1211
    [20] FANG LI-ZHI, LIU YONG-ZHEN. RAMAN SCATTERING OF RELATIVISTIC ELECTRONS IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, 1976, 25(6): 521-526. doi: 10.7498/aps.25.521
Metrics
  • Abstract views:  5057
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2020
  • Accepted Date:  11 December 2020
  • Available Online:  16 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回
Baidu
map