-
量子导引,作为一种特殊的量子关联,相较于量子纠缠和贝尔非局域性,展现出了特有的不对称性。这种不对称性使得两个独立的光学模式之间,通过量子导引交换可以建立单向或双向的导引,这对构建非对称量子网络具有至关重要的意义。本文提出了基于三组份与两组份纠缠态的全光学量子导引交换方案,这一方案利用低噪声、高带宽的四波混频过程,无测量地实现了传统方案中贝尔态测量的功能,避免了光电和电光转换。在导引交换操作后,原本独立的无直接相互作用的两个纠缠态产生了量子导引。具体研究了四波混频过程联合线性分束器或非线性分束器两种交换方案,研究发现,通过调节线性分束器的透射率和四波混频过程的增益,可以实现三模间的量子导引。这为单向量子通信和量子信息处理提供了新的可能性,使得量子资源的利用更加安全和可控。Quantum resource swapping is crucial for establishing quantum networks and achieving efficient quantum communication. It allows quantum resources to be shared and allocated between nodes in a quantum network, enhancing network flexibility and quantum information processing capabilities. Quantum steering is a special type of quantum correlation that exhibits unique asymmetry compared to quantum entanglement and Bell nonlocality. This asymmetry enables quantum steering swapping to establish one-way or two-way asymmetry quantum steering between two independent optical modes, which is crucial for constructing asymmetric quantum networks. In this paper, we propose the all-optical quantum steering swapping scheme based on tripartite entangled state and bipartite entangled state. The all-optical scheme does not involve optic-electro and electro-optic conversions, but utilizes a low-noise, high bandwidth four-wave mixing process to achieve the function of Bell state measurement in traditional schemes without measurement. After the steering swapping operation, the two originally independent entangled states without direct interaction generate quantum steering. This paper specifically investigates two swapping schemes in the four-wave mixing processes, combined with linear beam splitter and nonlinear beam splitter. By analyzing the steering characteristics of the output modes, both schemes exhibited a rich variety of multipartite steering types. By adjusting the transmissivity of the linear beam splitter and the gain of the four-wave mixing process, the steering relationship can be flexibly controlled to achieve one-way and two-way asymmetry steering. This provides new possibilities for one-way quantum communication and quantum information processing, making the utilization of quantum resources more efficient and controllable. Through in-depth analysis of the steering characteristics after swapping, it was found that compared to the linear beam splitter scheme, the nonlinear beam splitter scheme not only significantly improves the ability of quantum steering, but also allows for more flexible manipulation of monogamy relations of quantum steering. By optimizing the gain parameters of the nonlinear beam splitter, precise control of the monogamy relations can be achieved over a wider range. This not only expands broader application prospects for information processing and quantum communication in quantum networks, but also establishes an important foundation for building efficient and secure quantum information processing systems.
-
Keywords:
- Quantum steering swapping /
- Four-wave mixing process /
- Multipartite steering /
- Quantum communication
-
[1] Einstein A, Podolsky B, Rosen N 1935Phys. Rev. 47 777
[2] Schrödinger E 1935Math. Proc. Camb. Phil. Soc. 31 555
[3] Wiseman H M, Jones S J, Doherty A C 2007Phys. Rev. Lett. 98 140402
[4] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[5] Schrödinger E 1935Naturwissenschaften 23 807
[6] Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014Rev. Mod. Phys. 86 419
[7] Bowles J, Vértesi T, Quintino M T, Brunner N 2014Phys. Rev. Lett. 112 200402
[8] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F, Guo G C 2016Phys. Rev. Lett. 116 160404
[9] He Q Y, Gong Q H, Reid M D 2015Phys. Rev. Lett. 114 060402
[10] Branciard C, Cavalcanti E G, Walborn S P, Scarani V, Wiseman H M 2012Phys. Rev. A 85 010301
[11] Walk N, Hosseini S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symul T, Wiseman H M, Lam P K 2016Optica 3 634
[12] Reid M D 2013Phys. Rev. A 88 062338
[13] He Q Y, Rosales-Zárate L, Adesso G, Reid M D 2015Phys. Rev. Lett. 115 180502
[14] Cleve R, Gottesman D, Lo H K 1999Phys. Rev. Lett. 83 648
[15] Xiang Y, Kogias I, Adesso G, He Q Y 2017Phys. Rev. A 95 010101
[16] Hillery M, Bužek V, Berthiaume A 1999Phys. Rev. A 59 1829
[17] Lau H K, Weedbrook C 2013Phys. Rev. A 88 042313
[18] Xiang Y, Liu Y, Cai Y, Li F, Zhang Y P, He Q Y 2020 Phys. Rev. A 101 053834
[19] Liu Y, Cai Y, Xiang Y, Li F, Zhang Y P, He Q Y 2019Opt. Express 27 33070
[20] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008Nature 454 1098
[21] Duan L M, Lukin M D, Cirac J I, Zoller P 2001Nature 414 413
[22] Liu S S, Lou Y B, Chen Y X, Jing J T 2022Phys. Rev. Lett. 128 060503
[23] Polkinghorne R E S, Ralph T C 1999Phys. Rev. Lett. 83 2095
[24] Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998Phys. Rev. Lett. 80 3891
[25] Jennewein T, Weihs G, Pan J W, Zeilinger A 2001Phys. Rev. Lett. 88 017903
[26] Ma L X, Lei X, Cheng J L, Yan Z H, Jia X J 2023Opt. Express 31 8257
[27] Wang M H, Qin Z Z, Su X L 2017Phys. Rev. A 95 052311
[28] Wang M H, Qin Z Z, Wang Y, Su X L 2017Phys. Rev. A 96 022307
[29] Wang N, Wang M H, Tian C X, Deng X W, Su X L 2023Laser Photonics Rev. 182300653
[30] Hu Q W, Wang J B, Liu S S, Jing J T 2024Opt. Lett. 49 2585
[31] Liu S S, Lou Y B, Jing J T 2020Nat. Commun. 11 3875
[32] Liu S S, Lou Y B, Jing J T 2019Phys. Rev. Lett. 123 113602
[33] Kogias I, Lee A R, Ragy S, Adesso G 2015Phys. Rev. Lett. 114 060403
[34] Ralph T C 1999Opt. Lett. 24 348
计量
- 文章访问数: 151
- PDF下载量: 9
- 被引次数: 0