搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四波混频的三组份全光量子导引交换

李晓玲 翟淑琴 刘奎

引用本文:
Citation:

基于四波混频的三组份全光量子导引交换

李晓玲, 翟淑琴, 刘奎

Tripartite all-optical quantum steering swapping based on four-wave mixing process

Li Xiaoling, Zhai Shuqin, Liu Kui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 量子导引,作为一种特殊的量子关联,相较于量子纠缠和贝尔非局域性,展现出了特有的不对称性。这种不对称性使得两个独立的光学模式之间,通过量子导引交换可以建立单向或双向的导引,这对构建非对称量子网络具有至关重要的意义。本文提出了基于三组份与两组份纠缠态的全光学量子导引交换方案,这一方案利用低噪声、高带宽的四波混频过程,无测量地实现了传统方案中贝尔态测量的功能,避免了光电和电光转换。在导引交换操作后,原本独立的无直接相互作用的两个纠缠态产生了量子导引。具体研究了四波混频过程联合线性分束器或非线性分束器两种交换方案,研究发现,通过调节线性分束器的透射率和四波混频过程的增益,可以实现三模间的量子导引。这为单向量子通信和量子信息处理提供了新的可能性,使得量子资源的利用更加安全和可控。
    Quantum resource swapping is crucial for establishing quantum networks and achieving efficient quantum communication. It allows quantum resources to be shared and allocated between nodes in a quantum network, enhancing network flexibility and quantum information processing capabilities. Quantum steering is a special type of quantum correlation that exhibits unique asymmetry compared to quantum entanglement and Bell nonlocality. This asymmetry enables quantum steering swapping to establish one-way or two-way asymmetry quantum steering between two independent optical modes, which is crucial for constructing asymmetric quantum networks. In this paper, we propose the all-optical quantum steering swapping scheme based on tripartite entangled state and bipartite entangled state. The all-optical scheme does not involve optic-electro and electro-optic conversions, but utilizes a low-noise, high bandwidth four-wave mixing process to achieve the function of Bell state measurement in traditional schemes without measurement. After the steering swapping operation, the two originally independent entangled states without direct interaction generate quantum steering. This paper specifically investigates two swapping schemes in the four-wave mixing processes, combined with linear beam splitter and nonlinear beam splitter. By analyzing the steering characteristics of the output modes, both schemes exhibited a rich variety of multipartite steering types. By adjusting the transmissivity of the linear beam splitter and the gain of the four-wave mixing process, the steering relationship can be flexibly controlled to achieve one-way and two-way asymmetry steering. This provides new possibilities for one-way quantum communication and quantum information processing, making the utilization of quantum resources more efficient and controllable. Through in-depth analysis of the steering characteristics after swapping, it was found that compared to the linear beam splitter scheme, the nonlinear beam splitter scheme not only significantly improves the ability of quantum steering, but also allows for more flexible manipulation of monogamy relations of quantum steering. By optimizing the gain parameters of the nonlinear beam splitter, precise control of the monogamy relations can be achieved over a wider range. This not only expands broader application prospects for information processing and quantum communication in quantum networks, but also establishes an important foundation for building efficient and secure quantum information processing systems.
  • [1]

    Einstein A, Podolsky B, Rosen N 1935Phys. Rev. 47 777

    [2]

    Schrödinger E 1935Math. Proc. Camb. Phil. Soc. 31 555

    [3]

    Wiseman H M, Jones S J, Doherty A C 2007Phys. Rev. Lett. 98 140402

    [4]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [5]

    Schrödinger E 1935Naturwissenschaften 23 807

    [6]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014Rev. Mod. Phys. 86 419

    [7]

    Bowles J, Vértesi T, Quintino M T, Brunner N 2014Phys. Rev. Lett. 112 200402

    [8]

    Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F, Guo G C 2016Phys. Rev. Lett. 116 160404

    [9]

    He Q Y, Gong Q H, Reid M D 2015Phys. Rev. Lett. 114 060402

    [10]

    Branciard C, Cavalcanti E G, Walborn S P, Scarani V, Wiseman H M 2012Phys. Rev. A 85 010301

    [11]

    Walk N, Hosseini S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symul T, Wiseman H M, Lam P K 2016Optica 3 634

    [12]

    Reid M D 2013Phys. Rev. A 88 062338

    [13]

    He Q Y, Rosales-Zárate L, Adesso G, Reid M D 2015Phys. Rev. Lett. 115 180502

    [14]

    Cleve R, Gottesman D, Lo H K 1999Phys. Rev. Lett. 83 648

    [15]

    Xiang Y, Kogias I, Adesso G, He Q Y 2017Phys. Rev. A 95 010101

    [16]

    Hillery M, Bužek V, Berthiaume A 1999Phys. Rev. A 59 1829

    [17]

    Lau H K, Weedbrook C 2013Phys. Rev. A 88 042313

    [18]

    Xiang Y, Liu Y, Cai Y, Li F, Zhang Y P, He Q Y 2020 Phys. Rev. A 101 053834

    [19]

    Liu Y, Cai Y, Xiang Y, Li F, Zhang Y P, He Q Y 2019Opt. Express 27 33070

    [20]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008Nature 454 1098

    [21]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001Nature 414 413

    [22]

    Liu S S, Lou Y B, Chen Y X, Jing J T 2022Phys. Rev. Lett. 128 060503

    [23]

    Polkinghorne R E S, Ralph T C 1999Phys. Rev. Lett. 83 2095

    [24]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998Phys. Rev. Lett. 80 3891

    [25]

    Jennewein T, Weihs G, Pan J W, Zeilinger A 2001Phys. Rev. Lett. 88 017903

    [26]

    Ma L X, Lei X, Cheng J L, Yan Z H, Jia X J 2023Opt. Express 31 8257

    [27]

    Wang M H, Qin Z Z, Su X L 2017Phys. Rev. A 95 052311

    [28]

    Wang M H, Qin Z Z, Wang Y, Su X L 2017Phys. Rev. A 96 022307

    [29]

    Wang N, Wang M H, Tian C X, Deng X W, Su X L 2023Laser Photonics Rev. 182300653

    [30]

    Hu Q W, Wang J B, Liu S S, Jing J T 2024Opt. Lett. 49 2585

    [31]

    Liu S S, Lou Y B, Jing J T 2020Nat. Commun. 11 3875

    [32]

    Liu S S, Lou Y B, Jing J T 2019Phys. Rev. Lett. 123 113602

    [33]

    Kogias I, Lee A R, Ragy S, Adesso G 2015Phys. Rev. Lett. 114 060403

    [34]

    Ralph T C 1999Opt. Lett. 24 348

  • [1] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , doi: 10.7498/aps.71.20221125
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , doi: 10.7498/aps.71.20211146
    [3] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , doi: 10.7498/aps.71.20210907
    [4] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , doi: 10.7498/aps.71.20220871
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯.  , doi: 10.7498/aps.70.20210907
    [6] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引.  , doi: 10.7498/aps.70.20201981
    [7] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析.  , doi: 10.7498/aps.64.210303
    [8] 李熙涵. 量子直接通信.  , doi: 10.7498/aps.64.160307
    [9] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真.  , doi: 10.7498/aps.63.240303
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , doi: 10.7498/aps.63.130301
    [11] 刘晓慧, 聂敏, 裴昌幸. 量子无线广域网构建与路由策略.  , doi: 10.7498/aps.62.200304
    [12] 张琳, 聂敏, 刘晓慧. 有噪量子信道生存函数研究及其仿真.  , doi: 10.7498/aps.62.150301
    [13] 朱伟, 聂敏. 量子信令交换机模型设计及性能分析.  , doi: 10.7498/aps.62.130304
    [14] 李申, 马海强, 吴令安, 翟光杰. 全光纤量子通信系统中的高速偏振控制方案.  , doi: 10.7498/aps.62.084214
    [15] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信.  , doi: 10.7498/aps.61.030303
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , doi: 10.7498/aps.61.154206
    [17] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略.  , doi: 10.7498/aps.60.040304.2
    [18] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源.  , doi: 10.7498/aps.60.060308
    [19] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , doi: 10.7498/aps.59.2193
    [20] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , doi: 10.7498/aps.56.5066
计量
  • 文章访问数:  151
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-24

/

返回文章
返回
Baidu
map