-
Optical emission spectroscopy (OES) has been widely applied to plasma etching, material processing, development of plasma equipment and technology, as well as plasma propulsion. The collisional-radiative model used in OES is affected by the deviation of fundamental data such as collision cross sections, thus leading to the error in diagnostic results. In this work, a novel method is developed based on feedforward neural network for OES. By comparing the error characteristics of the new method with those of the traditional least-square diagnostic method, it is found that the neural network diagnosis method can reduce the transmission of basic data deviation to the diagnosis results by identifying the characteristics of the spectral vector. This is confirmed by the experimental results. Finally, the mechanism of the neural network algorithm against fundamental data deviation is analyzed. This method also has a good application prospect in plasma parameter online monitoring, imaging monitoring and mass data processing.
[1] Donnelly, Vincent M, Avinoam K 2013 J. Vac. Sci. Technol., A 31 050825
Google Scholar
[2] 曲鹏程, 唐代飞, 向鹏飞, 袁安波 2017 电子科技 30 153
Google Scholar
Qu P C, Tang D F, Xiang P F, Yuan A B 2017 Electr. Sci. Technol. 30 153
Google Scholar
[3] Edy R, Huang G S, Zhao Y T, Guo Y, Zhang J, Mei Y F, Shi J J 2017 Surf. Coat. Technol. 329 149
Google Scholar
[4] 王巍, 叶甜春, 李兵, 陈大鹏, 刘明 2005 半导体技术 30 13
Google Scholar
Wang W, Ye T C, Li B, Chen D P, Liu M 2005 Semiconductor Technol. 30 13
Google Scholar
[5] 王巍, 王玉青, 孙江宏, 兰中文, 龚云贵 2008 红外与激光工程 4 748
Google Scholar
Wang W, Wang Y Q, Sun J H, Lan Z W, Gong Y G 2008 Infrared Laser Eng. 4 748
Google Scholar
[6] Sridhar S, Donnelly V M, Liu L, Economou D J 2016 J. Vac. Sci. Technol., A 34 061303
Google Scholar
[7] Gao J, Zhou L, Liang J, Wang Z, Wu Y, Muhammad J, Dong X, Li S, Yu H, Quan X 2018 Nano Res. 11 1470
Google Scholar
[8] Kyung K, Winderbaum S, Hameiri Z 2017 Surf. Coat. Technol. 328 204
Google Scholar
[9] Yang J, Yokota S, Kaneko R, Komurasaki K 2010 Phys. Plasmas 17 103504
Google Scholar
[10] Zhu X M, Wang Y F, Wang Y, Yu D R, Zatsarinny O, Bartschat K, Tsankov T V, Czarnetzki U 2019 Plasma Sources Sci. Technol. 28 105005
Google Scholar
[11] Donnelly V M 2004 J. Phys. D: Appl. Phys. 3 7
[12] Stafford L, Khare R, Donnelly V M, Margot J, Moisan M 2009 Appl. Phys. Lett. 94 021503
Google Scholar
[13] Wang Q, Koleva I, Donnelly V M, Economou D J 2005 J. Phys. D: Appl. Phys. 38 1690
Google Scholar
[14] Huang X J, Zhang J, Guo Y, Zhang J, Shi J J 2014 IEEE Trans. Plasma Sci. 42 3569
Google Scholar
[15] 孙殿平 2008 博士学位论文 (上海: 华东师范大学)
Sun D P 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)
[16] 刘冲, 何湘, 朱卫华 2016 光谱学与光谱分析 S1 469
Liu C, He X, Zhu W H 2016 Spectrosc. Spect. Anal. S1 469
[17] Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204
[18] Zhu X M, Pu Y K 2010 J Phys. D: Appl. Phys. 43 403001
Google Scholar
[19] Zhu X M, Chen W C, Li J, Cheng Z W, Pu Y K 2012 Plasma Sources Sci. Technol. 21 045009
Google Scholar
[20] Boffard J B, Lin C C, DeJoseph C A 2004 J. Phys. D: Appl. Phys. 37 R 37 R143
Google Scholar
[21] Sadeghi N, Setser D W 2001 J. Chem. Phys. 115 3144
[22] Weber T, Boffard J B, Lin C C 2003 Phys. Rev. A 68 032719
Google Scholar
[23] Sharma L, Srivastava R, Stauffer A D 2011 Eur. Phys. J. D 62 399
Google Scholar
[24] Zatsarinny O, Bartschat K 2013 J. Phys. B: At. Mol. Opt. 46 112001
Google Scholar
[25] Bray I, Fursa D, Kadyrov A, Stelbovicsa A T, Kheifets A S, Mukhamedzhanov A M 2012 Phys. Rep. 520 135
Google Scholar
[26] Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Chin. Phys. Lett. 31 033401
Google Scholar
[27] Boffard J B, Jung R O, Lin C C, Wendt A E 2009 Plasma Sources Sci. Technol. 18 035017
Google Scholar
[28] Boffard J B, Jung R O, Lin C C, Wendt A E 2010 Plasma Sources Sci. Technol. 19 065001
Google Scholar
[29] Terzi M, Masiero C, Beghi A, Maggipinto M, Susto G A 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry Modena, Italy, September 11−13, 2017 p17244916
[30] Wang C Y, Hsu C C 2019 Plasma Sources Sci. Technol. 28 105013
Google Scholar
[31] 康志伟, 刘拓, 刘劲, 马辛, 陈晓 2020 69 069701
Google Scholar
Kang Z W, Liu T, Liu J, Ma X, Chen X 2020 Acta Phys. Sin. 69 069701
Google Scholar
[32] 丁刚, 钟诗胜 2007 2 1224
Google Scholar
Ding G, Zhong S S 2007 Acta Phys. Sin. 2 1224
Google Scholar
[33] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209
Google Scholar
Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209
Google Scholar
[34] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701
Google Scholar
Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lv D S 2019 Acta Phys. Sin. 68 130701
Google Scholar
[35] 王鹏举, 范俊宇, 苏艳, 赵纪军 2020 69 238702
Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702
[36] 彭相洲, 陈雨 2020 计算机应用研究 37 47
Peng X Z, Chen Y 2020 Appl. Res. Com. 37 47 (in Chinese)
[37] 孟圣峰 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Meng S F 2019 M. S. Thesis (Harbin: Harbin Institute of Technology)(in Chinese)
[38] Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002
Google Scholar
[39] Abdollah S, Nikiforov A Y, Leys C 2010 Phys. Plasmas 17 063504
Google Scholar
[40] Zhu X M, Chen W C, Li J, Pu Y K 2008 J. Phys. D: Appl. Phys. 42 025203
-
图 6 网络预测结果与训练目标的对应关系 (a)电子温度的对应关系; (b)电子密度的对应关系; (c)电子温度的预测误差; (d)电子密度的预测误差
Figure 6. Corresponding relationship between the network prediction result and the training target: (a) Corresponding relationship of the electron temperature; (b) corresponding relationship of the electron density; (c) prediction error of the electron temperature; (d) prediction error of the electron density.
图 7 使用最小二乘方法获得的拟合结果(为保证图的可读性, 对离子谱线强度进行了放大处理, 并将拟合所得光谱的波长进行了偏置)
Figure 7. Fitting results obtained by the least square method (in order to improve the readability of the image, the intensity of the ion spectral line is amplified, and a bias is introduced into the wavelength of the fitting spectrum).
图 11 (a)考夫曼离子源中电子密度的诊断结果; (b)考夫曼离子源中电子温度的诊断结果; (c)最小二乘方法和神经网络方法获得的电子密度结果的相对误差; (d)最小二乘方法和神经网络方法获得的电子温度结果的相对误差. “探针”、“最小二乘”和“神经网络”分别表示由朗缪尔探针、最小二乘方法和神经网络方法获得的诊断结果
Figure 11. (a) Diagnostic results of ne in Kaufman ion source; (b) diagnostic results of Te in Kaufman ion source; (c) relative error of ne by least-square method and neural network method; (d) relative error of Te by least-square method and neural network method. “探针”, “最小二乘”, “神经网络” denotes the diagnostic results obtained by Langmuir probe, least-square diagnostic method and neural network diagnostic method, respectively.
表 1 本文研究中选用的氙谱线表
Table 1. Xenon spectral lines used in this work.
序号 波长/nm 上能级 序号 波长/nm 上能级 1 460.303 5p4(3P2)6p $ {}^{2}{\left[1\right]}_{3/2}^\circ $ 9 834.745 5p5($ {}^{2}{\mathrm{P}}_{1/2}^\circ $)6p 2[3/2]2 2 484.433 5p4(3P2)6p $ {}^{2}{\left[3\right]}_{7/2}^\circ $ 10 840.919 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]1 3 492.148 5p4(3P1)6p $ {}^{2}{\left[2\right]}_{5/2}^\circ $ 11 881.941 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]3 4 529.222 5p4(3P2)6p $ {}^{2}{\left[2\right]}_{5/2}^\circ $ 12 895.225 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]2 5 541.915 5p4(3P2)6p $ {}^{2}{\left[3\right]}_{5/2}^\circ $ 13 904.545 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]2 6 788.739 5p5(2P°1/2)6p 2[1/2]0 14 916.265 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]1 7 823.163 5p5(2P°3/2)6p 2[3/2]2 15 979.970 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[1/2]1 8 828.012 5p5(2P°3/2)6p 2[1/2]0 16 992.320 5p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]2 -
[1] Donnelly, Vincent M, Avinoam K 2013 J. Vac. Sci. Technol., A 31 050825
Google Scholar
[2] 曲鹏程, 唐代飞, 向鹏飞, 袁安波 2017 电子科技 30 153
Google Scholar
Qu P C, Tang D F, Xiang P F, Yuan A B 2017 Electr. Sci. Technol. 30 153
Google Scholar
[3] Edy R, Huang G S, Zhao Y T, Guo Y, Zhang J, Mei Y F, Shi J J 2017 Surf. Coat. Technol. 329 149
Google Scholar
[4] 王巍, 叶甜春, 李兵, 陈大鹏, 刘明 2005 半导体技术 30 13
Google Scholar
Wang W, Ye T C, Li B, Chen D P, Liu M 2005 Semiconductor Technol. 30 13
Google Scholar
[5] 王巍, 王玉青, 孙江宏, 兰中文, 龚云贵 2008 红外与激光工程 4 748
Google Scholar
Wang W, Wang Y Q, Sun J H, Lan Z W, Gong Y G 2008 Infrared Laser Eng. 4 748
Google Scholar
[6] Sridhar S, Donnelly V M, Liu L, Economou D J 2016 J. Vac. Sci. Technol., A 34 061303
Google Scholar
[7] Gao J, Zhou L, Liang J, Wang Z, Wu Y, Muhammad J, Dong X, Li S, Yu H, Quan X 2018 Nano Res. 11 1470
Google Scholar
[8] Kyung K, Winderbaum S, Hameiri Z 2017 Surf. Coat. Technol. 328 204
Google Scholar
[9] Yang J, Yokota S, Kaneko R, Komurasaki K 2010 Phys. Plasmas 17 103504
Google Scholar
[10] Zhu X M, Wang Y F, Wang Y, Yu D R, Zatsarinny O, Bartschat K, Tsankov T V, Czarnetzki U 2019 Plasma Sources Sci. Technol. 28 105005
Google Scholar
[11] Donnelly V M 2004 J. Phys. D: Appl. Phys. 3 7
[12] Stafford L, Khare R, Donnelly V M, Margot J, Moisan M 2009 Appl. Phys. Lett. 94 021503
Google Scholar
[13] Wang Q, Koleva I, Donnelly V M, Economou D J 2005 J. Phys. D: Appl. Phys. 38 1690
Google Scholar
[14] Huang X J, Zhang J, Guo Y, Zhang J, Shi J J 2014 IEEE Trans. Plasma Sci. 42 3569
Google Scholar
[15] 孙殿平 2008 博士学位论文 (上海: 华东师范大学)
Sun D P 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)
[16] 刘冲, 何湘, 朱卫华 2016 光谱学与光谱分析 S1 469
Liu C, He X, Zhu W H 2016 Spectrosc. Spect. Anal. S1 469
[17] Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204
[18] Zhu X M, Pu Y K 2010 J Phys. D: Appl. Phys. 43 403001
Google Scholar
[19] Zhu X M, Chen W C, Li J, Cheng Z W, Pu Y K 2012 Plasma Sources Sci. Technol. 21 045009
Google Scholar
[20] Boffard J B, Lin C C, DeJoseph C A 2004 J. Phys. D: Appl. Phys. 37 R 37 R143
Google Scholar
[21] Sadeghi N, Setser D W 2001 J. Chem. Phys. 115 3144
[22] Weber T, Boffard J B, Lin C C 2003 Phys. Rev. A 68 032719
Google Scholar
[23] Sharma L, Srivastava R, Stauffer A D 2011 Eur. Phys. J. D 62 399
Google Scholar
[24] Zatsarinny O, Bartschat K 2013 J. Phys. B: At. Mol. Opt. 46 112001
Google Scholar
[25] Bray I, Fursa D, Kadyrov A, Stelbovicsa A T, Kheifets A S, Mukhamedzhanov A M 2012 Phys. Rep. 520 135
Google Scholar
[26] Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Chin. Phys. Lett. 31 033401
Google Scholar
[27] Boffard J B, Jung R O, Lin C C, Wendt A E 2009 Plasma Sources Sci. Technol. 18 035017
Google Scholar
[28] Boffard J B, Jung R O, Lin C C, Wendt A E 2010 Plasma Sources Sci. Technol. 19 065001
Google Scholar
[29] Terzi M, Masiero C, Beghi A, Maggipinto M, Susto G A 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry Modena, Italy, September 11−13, 2017 p17244916
[30] Wang C Y, Hsu C C 2019 Plasma Sources Sci. Technol. 28 105013
Google Scholar
[31] 康志伟, 刘拓, 刘劲, 马辛, 陈晓 2020 69 069701
Google Scholar
Kang Z W, Liu T, Liu J, Ma X, Chen X 2020 Acta Phys. Sin. 69 069701
Google Scholar
[32] 丁刚, 钟诗胜 2007 2 1224
Google Scholar
Ding G, Zhong S S 2007 Acta Phys. Sin. 2 1224
Google Scholar
[33] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209
Google Scholar
Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209
Google Scholar
[34] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701
Google Scholar
Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lv D S 2019 Acta Phys. Sin. 68 130701
Google Scholar
[35] 王鹏举, 范俊宇, 苏艳, 赵纪军 2020 69 238702
Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702
[36] 彭相洲, 陈雨 2020 计算机应用研究 37 47
Peng X Z, Chen Y 2020 Appl. Res. Com. 37 47 (in Chinese)
[37] 孟圣峰 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Meng S F 2019 M. S. Thesis (Harbin: Harbin Institute of Technology)(in Chinese)
[38] Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002
Google Scholar
[39] Abdollah S, Nikiforov A Y, Leys C 2010 Phys. Plasmas 17 063504
Google Scholar
[40] Zhu X M, Chen W C, Li J, Pu Y K 2008 J. Phys. D: Appl. Phys. 42 025203
Catalog
Metrics
- Abstract views: 7801
- PDF Downloads: 168
- Cited By: 0