Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical

Duan Jun Tang Ke Qin Min Wang Dan Wang Mu-Di Fang Wu Meng Fan-Hao Xie Pin-Hua Liu Jian-Guo Liu Wen-Qing

Citation:

Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical

Duan Jun, Tang Ke, Qin Min, Wang Dan, Wang Mu-Di, Fang Wu, Meng Fan-Hao, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing
PDF
HTML
Get Citation
  • NO3 radical is the most important oxidant in atmospheric chemistry at night, and it controls the oxidation and removal of various trace gas components in the atmosphere. The understanding of the chemical process of NO3 radical is of great significance for studying the atmospheric pollution processes such as haze. The NO3 radical has a low concentration and strong activity, so it is relatively difficult to measure accurately. We report here in this paper an instrument for unambiguously measuring NO3 based on broadband cavity enhanced absorption spectroscopy (BBCEAS). To achieve the robust performance and system stability under diverse conditions, this BBCEAS instrument has been developed, with efficient sampling, and resistance against vibration and temperature change improved, and the BBCEAS instrument also has low-power consumption. The 660-nm-wavelemngth light-emitting diode (LED) is used as a light source of the BBCEAS system. The sampling gas path with low loss and suitable for domestic high-particle environment is designed. Through the LED light source test, the optimal working current and temperature can be obtained to achieve the acquisition of NO3 absorption spectrum with high signal-to-noise ratio. Considering the fact that the water vapor absorption is an important interference factor for the measurement of NO3 radical by BBCEAS, the daytime atmospheric measurement spectrum is used as a background spectrum, and participates in spectral fitting of NO3 to reduce the effect of water vapor. The mirror reflectivity and effective cavity length are calibrated, and the Allan variance analysis is also carried out. The reflectance of the mirror can reach about 0.99993 at 662 nm (NO3 absorption peak), and the corresponding theoretical effective optical path can reach more than 7 km, which can meet the measurement requirements of atmospheric NO3 radicals. The detection limit (1σ) of 0.75 pptv for NO3 is achieved with an acquisition time of 10 s and a total measurement error of about 16%. The atmospheric NO3 radical observation is carried out in Hefei. During the observation period, the highest NO3 concentration is 23.4 pptv, demonstrating the promising potential applications in in-situ, sensitive, accurate and fast simultaneous measurements of NO3 in the future by using the developed broadband cavity enhanced absorption spectroscopy.
      Corresponding author: Qin Min, mqin@aiofm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFC0209400), the National Natural Science Foundation of China (Grant Nos. 41705015, 41905130),Youth Science and Technology Talents Support Program (2020) by Anhui Association for Science and Technology (Grant No. RCTJ202002) and the Foundation of Director of Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China (Grant No. AGHH201601)
    [1]

    Levy H 1971 Science 173 141Google Scholar

    [2]

    Wayne R P, Barnes I, Biggs P, Burrows J P, Canosamas C E, Hjorth J, Lebras G, Moortgat G K, Perner D, Poulet G, Restelli G, Sidebottom H 1991 Atmos. Environ. Part A 25 1

    [3]

    Platt U, Alicke B, Dubois R, Geyer A, Hofzumahaus A, Holland F, Martinez M, Mihelcic D, Klupfel T, Lohrmann B, Patz W, Perner D, Rohrer F, Schafer J, Stutz J 2002 J. Atmos. Chem. 42 359Google Scholar

    [4]

    Stutz J, Alicke B, Ackermann R, Geyer A, White A, Williams E 2004 J. Geophys. Res. Atmos. 109 D12306Google Scholar

    [5]

    Platt U, Perner D, Winer A M, Harris G W, Pitts J N 1980 Geophys. Res. Lett. 7 89Google Scholar

    [6]

    Wood E C, Wooldridge P J, Freese J H, Albrecht T, Cohen R C 2003 Environ. Sci. Technol. 37 5732Google Scholar

    [7]

    Slusher D L, Huey L G, Tanner D J, Flocke F M, Roberts J M 2004 J. Geophys. Res. Atmos. 109 D19315Google Scholar

    [8]

    Mihelcic D, Volzthomas A, Patz H W, Kley D 1990 J. Atmos. Chem. 11 271Google Scholar

    [9]

    Wang D, Hu R, Xie P, Liu J, Liu W, Qin M, Ling L, Zeng Y, Chen H, Xing X, Zhu G, Wu J, Duan J, Lu X, Shen L 2015 J. Quant. Spectrosc. Radiat. Transfer 166 25

    [10]

    Wang H, Chen J, Lu K 2017 Atmos. Meas. Tech. 10 1465Google Scholar

    [11]

    Wagner N L, Dube W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227Google Scholar

    [12]

    Li Z, Hu R, Xie P, Wang H, Lu K, Wang D 2018 Sci. Total Environ. 613 131

    [13]

    Li Z, Hu R, Xie P, Hao C, Liu W 2018 Opt. Express 26 A433Google Scholar

    [14]

    Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 063001Google Scholar

    [15]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68Google Scholar

    [16]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916Google Scholar

    [17]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Meas. Tech. 4 1759Google Scholar

    [18]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [19]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [20]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [21]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2016 Atmos. Meas. Tech. 9 423Google Scholar

    [22]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [23]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797Google Scholar

    [24]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [25]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Meas. Tech. 7 199Google Scholar

    [26]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Meas. Tech. 6 1111Google Scholar

    [27]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758Google Scholar

    [28]

    Meinen J, Thieser J, Platt U, Leisner T 2010 Atmos. Chem. Phys. 10 3901Google Scholar

    [29]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quant. Spectrosc. Radiat. Transfer 133 199Google Scholar

    [30]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284Google Scholar

    [31]

    Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar

    [32]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779Google Scholar

    [33]

    Shardanand, Rao A D P 1977 NASA Technical Note

    [34]

    Kern C, Trick S, Rippel B, Platt U 2006 Appl. Opt. 45 2077Google Scholar

    [35]

    Yokelson R J, Burkholder J B, Fox R W, Talukdar R K, Ravishankara A R 1994 J. Phys. Chem. 98 13144Google Scholar

    [36]

    Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol., A 149 1Google Scholar

    [37]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

    [38]

    Qin M, Xie P, Su H, Gu J, Peng F, Li S, Zeng L, Liu J, Liu W, Zhang Y 2009 Atmos. Environ. 43 5731Google Scholar

  • 图 1  基于红光LED的宽带腔增强吸收光谱系统示意图

    Figure 1.  The schematic diagram of broadband cavity enhanced absorption spectrometer based on red LED.

    图 2  LED光源测试 (a) LED光谱随电流变化规律; (b) LED光谱随温度变化规律

    Figure 2.  Test of the LED light source: (a) LED spectrum changes with the current; (b) LED spectrum changes with temperature.

    图 3  镜面反射率标定 (a)黑线是氮气谱, 红线是氦气谱; (b)蓝线为镜面反射率曲线

    Figure 3.  Calibrations of mirror reflectivity: (a) The black line is nitrogen spectrum, and the red line is helium spectrum; (b) the blue line is the derived curve of mirror reflectivity.

    图 4  有效腔长标定 (a)NO2光谱拟合结果(b) NO2浓度时间序列

    Figure 4.  Calibration of effective cavity length: (a) Results of NO2 spectral fitting; (b) time series of NO2.

    图 5  实测大气中NO3的光谱反演实例 (a) 灰线是实测大气的吸收谱, 红线是拟合谱; (b) 灰线是NO3的吸收谱, 红线是拟合谱, 反演浓度12.2 ± 0.61 pptv; (c) 灰线是NO2的相对吸收谱, 红线是拟合谱; (d) 灰线是水汽的相对吸收谱, 红线是拟合谱; (e) 拟合残差谱, 标准偏差为8.7 × 10–10

    Figure 5.  Spectral inversion example of NO3: (a) The grey line is the absorption spectrum of the measured atmosphere, and the red line is the fitting spectrum; (b) the gray line is the absorption spectrum of NO3 and the red line is the fitting spectrum, concentration of NO3 is 12.2 ± 0.61 pptv; (c) the grey line is the relative absorption spectrum of NO2, and the red line is the fitting spectrum; (d) the gray line is the relative absorption spectrum of water vapor, and the red line is the fitting spectrum; (e) the gray line is residual spectrum, and the standard deviation of residual spectrum is 8.7 × 10–10.

    图 6  检测限分析 (a) NO3的Allan方差和标准方差随平均时间的变化曲线; (b) 4 s积分时间情况下的NO3浓度统计图; (c) 4 s积分时间情况下的NO3浓度时间序列

    Figure 6.  Analysis of detection limit: (a) Change curves of Allan variance and standard variance of NO3 with average time; (b) statistical chart of NO3 concentration with 4 s integration time; (c) time series of NO3 concentration with 4 s integration time.

    图 7  观测期间大气NO3, O3, NO2, SO2时间序列

    Figure 7.  Time series of Atmospheric NO3, O3, NO2 and SO2 during observation.

    Baidu
  • [1]

    Levy H 1971 Science 173 141Google Scholar

    [2]

    Wayne R P, Barnes I, Biggs P, Burrows J P, Canosamas C E, Hjorth J, Lebras G, Moortgat G K, Perner D, Poulet G, Restelli G, Sidebottom H 1991 Atmos. Environ. Part A 25 1

    [3]

    Platt U, Alicke B, Dubois R, Geyer A, Hofzumahaus A, Holland F, Martinez M, Mihelcic D, Klupfel T, Lohrmann B, Patz W, Perner D, Rohrer F, Schafer J, Stutz J 2002 J. Atmos. Chem. 42 359Google Scholar

    [4]

    Stutz J, Alicke B, Ackermann R, Geyer A, White A, Williams E 2004 J. Geophys. Res. Atmos. 109 D12306Google Scholar

    [5]

    Platt U, Perner D, Winer A M, Harris G W, Pitts J N 1980 Geophys. Res. Lett. 7 89Google Scholar

    [6]

    Wood E C, Wooldridge P J, Freese J H, Albrecht T, Cohen R C 2003 Environ. Sci. Technol. 37 5732Google Scholar

    [7]

    Slusher D L, Huey L G, Tanner D J, Flocke F M, Roberts J M 2004 J. Geophys. Res. Atmos. 109 D19315Google Scholar

    [8]

    Mihelcic D, Volzthomas A, Patz H W, Kley D 1990 J. Atmos. Chem. 11 271Google Scholar

    [9]

    Wang D, Hu R, Xie P, Liu J, Liu W, Qin M, Ling L, Zeng Y, Chen H, Xing X, Zhu G, Wu J, Duan J, Lu X, Shen L 2015 J. Quant. Spectrosc. Radiat. Transfer 166 25

    [10]

    Wang H, Chen J, Lu K 2017 Atmos. Meas. Tech. 10 1465Google Scholar

    [11]

    Wagner N L, Dube W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227Google Scholar

    [12]

    Li Z, Hu R, Xie P, Wang H, Lu K, Wang D 2018 Sci. Total Environ. 613 131

    [13]

    Li Z, Hu R, Xie P, Hao C, Liu W 2018 Opt. Express 26 A433Google Scholar

    [14]

    Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 063001Google Scholar

    [15]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68Google Scholar

    [16]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916Google Scholar

    [17]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Meas. Tech. 4 1759Google Scholar

    [18]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [19]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [20]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [21]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2016 Atmos. Meas. Tech. 9 423Google Scholar

    [22]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [23]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797Google Scholar

    [24]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [25]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Meas. Tech. 7 199Google Scholar

    [26]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Meas. Tech. 6 1111Google Scholar

    [27]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758Google Scholar

    [28]

    Meinen J, Thieser J, Platt U, Leisner T 2010 Atmos. Chem. Phys. 10 3901Google Scholar

    [29]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quant. Spectrosc. Radiat. Transfer 133 199Google Scholar

    [30]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284Google Scholar

    [31]

    Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar

    [32]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779Google Scholar

    [33]

    Shardanand, Rao A D P 1977 NASA Technical Note

    [34]

    Kern C, Trick S, Rippel B, Platt U 2006 Appl. Opt. 45 2077Google Scholar

    [35]

    Yokelson R J, Burkholder J B, Fox R W, Talukdar R K, Ravishankara A R 1994 J. Phys. Chem. 98 13144Google Scholar

    [36]

    Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol., A 149 1Google Scholar

    [37]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

    [38]

    Qin M, Xie P, Su H, Gu J, Peng F, Li S, Zeng L, Liu J, Liu W, Zhang Y 2009 Atmos. Environ. 43 5731Google Scholar

  • [1] Yan Yong-Biao, Li Shuang, Ding Shuang-Shuang, Zhang Bing-Xue, Sun Hao, Ju Quan-Hao, Yao Lu. Novel high-sensitivity optical thermometry based on fluorescence intensity ratio of ${\text{VO}}_4^{3 - } $ to Pr3+. Acta Physica Sinica, 2024, 73(9): 097801. doi: 10.7498/aps.73.20240012
    [2] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [3] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [4] Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun. Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure. Acta Physica Sinica, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [5] Tian Jing, Hou Mei-Jiang, Jiang Yang, Zhang Hong-Xu, Bai Guang-Fu, Feng Hao. High sensitivity fiber displacement sensor based compound ring laser cavity with linear variation of beat frequency signal. Acta Physica Sinica, 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [6] Zhou Zi-Xin, Huang Yin-Bo, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band. Acta Physica Sinica, 2019, 68(12): 129201. doi: 10.7498/aps.68.20190061
    [7] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [8] Ding Wu-Wen, Sun Li-Qun, Yi Lu-Ying. High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [9] Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [10] Li Zhi-Bin, Ma Hong-Liang, Cao Zhen-Song, Sun Ming-Guo, Huang Yin-Bo, Zhu Wen-Yue, Liu Qiang. High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 μm. Acta Physica Sinica, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [11] Li Ke-Wu, Wang Zhi-Bin, Chen You-Hua, Yang Chang-Qing, Zhang Rui. High sensitive measurement of optical rotation based on photo-elastic modulation. Acta Physica Sinica, 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [12] An Ping, Guo Hao, Chen Meng, Zhao Miao-Miao, Yang Jiang-Tao, Liu Jun, Xue Chen-Yang, Tang Jun. Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites films. Acta Physica Sinica, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [13] Zhang Zhe, Liu Qian, Qi Zhi-Mei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [14] Lou Shu-Qin, Wang Xin, Yin Guo-Lu, Han Bo-Lin. Curvature sensor based on side-leakage photonic crystal fiber with high sensitivity and broad linear measurement range. Acta Physica Sinica, 2013, 62(19): 194209. doi: 10.7498/aps.62.194209
    [15] Lu Dan-Feng, Qi Zhi-Mei. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer. Acta Physica Sinica, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [16] Dong Mei-Li, Zhao Wei-Xiong, Cheng Yue, Hu Chang-Jin, Gu Xue-Jun, Zhang Wei-Jun. Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement. Acta Physica Sinica, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [17] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Zhong Yao-Hua, Ye Fan, Qin Yi, Chen Fa-Xin, Ying Chun-Tong, Liu Guang-Jun. High-sensitivity fast neutron radiography system. Acta Physica Sinica, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [18] Fan Shu-Hai, He Hong-Bo, Shao Jian-Da, Fan Zheng-Xiu, Zhao Yuan-An. Method to improve absorption measurement sensitivity of thin films with surface thermal lens technique. Acta Physica Sinica, 2006, 55(2): 758-763. doi: 10.7498/aps.55.758
    [19] PAN SHAO-HUA. ANALYSIS OF THE MECHANISM AND SENSITIVITY OF INTRACAVITY SPECTROSCOPY. Acta Physica Sinica, 1981, 30(9): 1270-1274. doi: 10.7498/aps.30.1270
    [20] Ta-You Wu. Raman Spectrum of Ni(NO3)2·6NH3 Crystal: Effect of Crystal Field on the Nitrate ion. Acta Physica Sinica, 1944, 5(2): 180-186. doi: 10.7498/aps.5.180
Metrics
  • Abstract views:  7432
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2020
  • Accepted Date:  14 August 2020
  • Available Online:  19 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回
Baidu
map