Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel high-sensitivity optical thermometry based on fluorescence intensity ratio of ${\text{VO}}_4^{3 - } $ to Pr3+

Yan Yong-Biao Li Shuang Ding Shuang-Shuang Zhang Bing-Xue Sun Hao Ju Quan-Hao Yao Lu

Citation:

Novel high-sensitivity optical thermometry based on fluorescence intensity ratio of ${\text{VO}}_4^{3 - } $ to Pr3+

Yan Yong-Biao, Li Shuang, Ding Shuang-Shuang, Zhang Bing-Xue, Sun Hao, Ju Quan-Hao, Yao Lu
PDF
HTML
Get Citation
  • It is noteworthy that since 2010, the number of published and cited scientific papers on optical thermometry has increased exponentially. Optical thermometry technology is about to make a significant process in sensing, therapy, diagnosis, and imaging. The current research mainly focuses on optical thermometry that is developing towards high-sensitivity thermometry. In this work, a new thermometry strategy is proposed based on the different temperature-dependent behaviors between the host ions and the doped ions. Firstly, YVO4:xPr3+(x = 0%–1.5%) phosphors are successfully synthesized by the solid-state method. Then, the structure and luminescence properties of the samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrophotometer. The XRD results show that Pr3+ ions are successfully incorporated into the YVO4 host, and the sample has a tetragonal phase crystal structure with space group I41/amd. The SEM results show that the samples are rectangular-shaped micron particles with smooth surfaces, and the average grain size is about 2.1 μm. Under the excitation of 320 nm, the sample mainly exhibits broadband blue emission around 440 nm and red emission at 606 nm, which are attributed to the charge transfer transition of ${\text{VO}}_4^{3 - }$ and the 1D23H4 transition of Pr3+, respectively. The relationship between the luminescence of the sample and the concentration of Pr3+ is studied. It is found that the optimal doping concentration of Pr3+ is 0.5%, and a higher doping concentration will cause concentration to be quenched. The reason for quenching concentration is the electric dipole-quadrupole interaction. The luminescence peak position of the temperature-dependent spectrum of YVO4:0.5%Pr3+ is consistent with that at room temperature. As the temperature increases, the total luminescence intensity gradually decreases, which is caused by thermal quenching, and the mechanism of thermal quenching is analyzed. Since the temperature-dependent behaviors of luminescence of ${\text{VO}}_4^{3 - }$ and Pr3+ are significantly different from each other, a new fluorescence intensity ratio thermometry strategy is realized. Temperatures range is 303–353 K, and the maximum absolute sensitivity and relative sensitivity are 0.651 K–1 and 3.112×10–2 K–1 at 353 K, respectively, much higher than the traditional thermally coupled level thermometry strategy. In addition, there is no obvious overlap between the emission peaks of ${\text{VO}}_4^{3 - }$ and Pr3+, which provides a good discrimination capability for signal detection. The above results show that this work provides a promising path for designing self-reference optical thermometry materials with excellent temperature sensitivity and signal discrimination.
      Corresponding author: Li Shuang, lishuang_317@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174015).
    [1]

    Wang Y Z, Sun Y S, Xia Z G 2023 J. Phys. Chem. Lett. 14 178Google Scholar

    [2]

    Kesarwani V, Rai V K 2022 J. Appl. Phys. 132 113102Google Scholar

    [3]

    Shi X Y, Chen Y Q, Li G X, Qiang K R, Mao Q A, Pei L, Liu M J, Zhong J S 2023 Ceram. Int. 49 20839Google Scholar

    [4]

    Kimura K, Morinaga Y, Imada H, Katayama I, Asakawa K, Yoshioka K, Kim Y, Takeda J 2021 ACS Photonics 8 982Google Scholar

    [5]

    Chen Y Q, Guo H J, Shi Q F, Qiao J W, Cui C E, Huang P, Wang L 2023 J. Alloys Compd. 965 171401Google Scholar

    [6]

    Li L, Yang P X, Xia W D, Wang Y J, Ling F L, Cao Z M, Jiang S, Xiang G T, Zhou X J, Wang Y 2021 Ceram. Int. 47 769Google Scholar

    [7]

    Wang C L, Jin Y H, Zhang R T, Yao Q, Hu Y H 2022 J. Alloys Compd. 894 162494Google Scholar

    [8]

    Xu W, Zhao L, Shang F K, Zheng L J, Zhang Z G 2022 J. Lumin. 249 119042Google Scholar

    [9]

    Li Z J, Dong J N, Wang Q, Chen N Q, Cui W L, He Y B, Chen B L, Zhao D 2023 J. Lumin. 263 120070Google Scholar

    [10]

    吴晗, 陈浩然, 解小雨, 涂浪平, 李齐清, 孔祥贵, 常钰磊 2023 发光学报 44 1335Google Scholar

    Wu H, Chen H R, Xie X Y, Xu L P, Li Q Q, Kong X G, Chang Y L 2023 Chin. J. Lumin. 44 1335Google Scholar

    [11]

    Zhou L, Du P, Li W, Luo L, Xing G 2020 Ind. Eng. Chem. Res. 59 9989Google Scholar

    [12]

    Duan Y M, Sun Y L, Zhu H Y, Li Z H, Zhang L, Zhang G 2021 Opt. Laser Technol. 144 107429Google Scholar

    [13]

    王玉婷, 王妍, 曲征, 周少帅 2019 中国稀土学报 37 426

    Wang Y T, Wang Y, Qu Z, Zhou S S 2019 J. Rare-Earths 37 426

    [14]

    Zhou H T, Guo N, Liang Q M, Ding Y, Pan Y, Song Y Y, Ouyang R Z, Miao Y Q, Shao B Q 2019 Ceram. Int. 45 16651Google Scholar

    [15]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Kolesnikov E Y, Lähderanta E 2021 ACS Appl. Nano Mater. 4 1959Google Scholar

    [16]

    Zhou H, Gao W H, Cai P C, Zhang B Q, Li S 2020 Solid State Sci. 104 106283Google Scholar

    [17]

    Tian X Y, Wen J, Wang S M, Hu J L, Li J, Peng H X 2016 Mater. Res. Bull. 77 279Google Scholar

    [18]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [19]

    Van Uitert L G 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [20]

    Boutinaud P, Pinel E, Oubaha M, Mahiou R, Cavalli E, Bettinelli M 2006 Opt. Mater. 28 9Google Scholar

    [21]

    Struck C W, Fonger W H 1971 J. Appl. Phys. 42 4515Google Scholar

    [22]

    吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺 2017 66 117801Google Scholar

    Lü Z C, Li Y, Quan G Y, Zheng Q H, Zhou W W, Zhao W 2017 Acta Phys. Sin. 66 117801Google Scholar

    [23]

    唐红霞, 王昌文, 宋美霖, 王春红, 于长兴 2023 中国稀土学报 1

    Tang H X, Wang C W, Song M L, Wang C H, Yu C X 2023 J. Rare-Earths 1

    [24]

    缪菊红, 谢颖, 陈铭源, 李林珂, 韦松 2022 中国稀土学报 40 602

    Liao J H, Xie Y, Chen M Y, Li L K, Wei S 2022 J. Rare-Earths 40 602

    [25]

    夏克尔阿·热帕提, 王林香, 李晴, 柏云凤, 买买提·穆妮热 2023 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [26]

    贾朝阳, 杨雪, 王志刚, 柴瑞鹏, 庞庆, 张翔宇, 高当丽 2023 72 224210Google Scholar

    Jia C Y, Yang X, Wang Z G, Chai R P, Pang Q, Zhang X Y, Gao D L 2023 Acta Phys. Sin. 72 224210Google Scholar

  • 图 1  (a) YVO4:xPr3+ (x = 0%—1.5%)样品的XRD图谱及YVO4的标准卡片; (b) YVO4:0.5%Pr3+样品的XRD Rietveld精修图谱, 内插图为样品的晶体结构

    Figure 1.  (a) XRD patterns of YVO4:xPr3+ (x = 0%–1.5%) samples, compared with the standard data of YVO4 reference pattern (JCPDS#17-341); (b) XRD Rietveld refinement pattern of YVO4:0.5%Pr3+ sample, the inset shows the crystal structure of the sample.

    图 2  YVO4:0.5%Pr3+样品在不同放大倍数下的SEM图(a), (b)和粒径分布图(c)

    Figure 2.  SEM images under different magnifications (a), (b) and particle size distribution of YVO4:0.5%Pr3+ sample (c).

    图 3  (a) YVO4:0.5%Pr3+在606 nm监测下的激发光谱与320 nm激发下的发射光谱; (b) YVO4:Pr3+的能级跃迁图

    Figure 3.  (a) Excitation (λem = 606 nm) and emission (λex = 320 nm) spectra of YVO4:0.5%Pr3+; (b) the level transition diagram of YVO4:0.5%Pr3+.

    图 4  (a)不同掺杂浓度的YVO4:xPr3+(x = 0.1%—1.5%)在320 nm激发下的发射光谱; (b) $ \log \left( {{{I_0^\prime } \mathord{\left/ {\vphantom {{I_0^\prime } {{I^\prime } - 1}}} \right. } {{I^\prime } - 1}}} \right) $对log(x)的线性拟合图(x≥0.3%)

    Figure 4.  (a) Emission spectra of YVO4:xPr3+ (x = 0.1%–1.5%) with different doping concentrations under 320 nm excitation; (b) linear fit of $ \log \left( {{{I_0'} /{{I'} - 1}}} \right) $ to log(x) (x≥0.3%).

    图 5  (a) YVO4:0.5%Pr3+在303—353 K温度范围内的变温光谱(λex = 320 nm); (b) Pr3+发光热淬灭的位形坐标图

    Figure 5.  (a) Temperature-dependent spectra of YVO4:0.5%Pr3+ in the temperature range of 303–353 K (λex = 320 nm); (b) the configuration diagram of thermal quenching of Pr3+ luminescence.

    图 6  (a) YVO4:0.5%Pr3+的FIR(I440/I606)随温度的变化; (b)绝对灵敏度Sa和相对灵敏度Sr随温度的变化; (c)连续5个循环的FIR变化

    Figure 6.  (a) FIR (I440/I606) of YVO4:0.5%Pr3+ versus temperature; (b) temperature dependence of absolute sensitivity Sa and relative sensitivity Sr; (c) variation of the FIR value in 5 consecutive cycles.

    表 1  YVO4:0.5%Pr3+样品在XRD Rietveld精修后的相关参数

    Table 1.  Corresponding parameters of XRD Rietveld refinement for YVO4:0.5%Pr3+ sample.

    相结构 空间群 晶胞参数 体积/Å3 质量因子
    四方相 I41/amd a = b = 7.125 Å
    c = 6.296 Å
    α = β = γ = 90º
    319.63 Rp = 4.60
    Rwp = 5.84
    Re = 3.01
    χ2 = 3.76
    DownLoad: CSV

    表 2  基于FIR测温荧光粉的灵敏度

    Table 2.  Sensitivities of phosphors based on FIR thermometry.

    Strategies Materials λex/nm Sa/K–1 Sr/(10–2 K–1) Temperature range/K Ref.
    TCLs YVO4:1%Er3+ 345 0.0102 1.070 303—573 [23]
    NaYF4:Yb3+/Er3+/Tm3+ 980 0.2974 1.174 293—573 [24]
    Bi2WO6:Tm3+, Yb3+ 980 0.0025 0.144 298—573 [25]
    Li0.9K0.1NbO3:Pr3+, Er3+ 380 0.0054 1.120 297—443 [26]
    808 0.0112 1.284
    980 0.0083 1.106
    Dual-mode SrMoO4:Pr3+ 449 0.0452 0.98 298—498 [6]
    GdVO4:0.5%Sm3+ 310 1.6 300—480 [13]
    YVO4:0.5%Pr3+ 320 0.6510 3.112 303—353 This work
    DownLoad: CSV
    Baidu
  • [1]

    Wang Y Z, Sun Y S, Xia Z G 2023 J. Phys. Chem. Lett. 14 178Google Scholar

    [2]

    Kesarwani V, Rai V K 2022 J. Appl. Phys. 132 113102Google Scholar

    [3]

    Shi X Y, Chen Y Q, Li G X, Qiang K R, Mao Q A, Pei L, Liu M J, Zhong J S 2023 Ceram. Int. 49 20839Google Scholar

    [4]

    Kimura K, Morinaga Y, Imada H, Katayama I, Asakawa K, Yoshioka K, Kim Y, Takeda J 2021 ACS Photonics 8 982Google Scholar

    [5]

    Chen Y Q, Guo H J, Shi Q F, Qiao J W, Cui C E, Huang P, Wang L 2023 J. Alloys Compd. 965 171401Google Scholar

    [6]

    Li L, Yang P X, Xia W D, Wang Y J, Ling F L, Cao Z M, Jiang S, Xiang G T, Zhou X J, Wang Y 2021 Ceram. Int. 47 769Google Scholar

    [7]

    Wang C L, Jin Y H, Zhang R T, Yao Q, Hu Y H 2022 J. Alloys Compd. 894 162494Google Scholar

    [8]

    Xu W, Zhao L, Shang F K, Zheng L J, Zhang Z G 2022 J. Lumin. 249 119042Google Scholar

    [9]

    Li Z J, Dong J N, Wang Q, Chen N Q, Cui W L, He Y B, Chen B L, Zhao D 2023 J. Lumin. 263 120070Google Scholar

    [10]

    吴晗, 陈浩然, 解小雨, 涂浪平, 李齐清, 孔祥贵, 常钰磊 2023 发光学报 44 1335Google Scholar

    Wu H, Chen H R, Xie X Y, Xu L P, Li Q Q, Kong X G, Chang Y L 2023 Chin. J. Lumin. 44 1335Google Scholar

    [11]

    Zhou L, Du P, Li W, Luo L, Xing G 2020 Ind. Eng. Chem. Res. 59 9989Google Scholar

    [12]

    Duan Y M, Sun Y L, Zhu H Y, Li Z H, Zhang L, Zhang G 2021 Opt. Laser Technol. 144 107429Google Scholar

    [13]

    王玉婷, 王妍, 曲征, 周少帅 2019 中国稀土学报 37 426

    Wang Y T, Wang Y, Qu Z, Zhou S S 2019 J. Rare-Earths 37 426

    [14]

    Zhou H T, Guo N, Liang Q M, Ding Y, Pan Y, Song Y Y, Ouyang R Z, Miao Y Q, Shao B Q 2019 Ceram. Int. 45 16651Google Scholar

    [15]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Kolesnikov E Y, Lähderanta E 2021 ACS Appl. Nano Mater. 4 1959Google Scholar

    [16]

    Zhou H, Gao W H, Cai P C, Zhang B Q, Li S 2020 Solid State Sci. 104 106283Google Scholar

    [17]

    Tian X Y, Wen J, Wang S M, Hu J L, Li J, Peng H X 2016 Mater. Res. Bull. 77 279Google Scholar

    [18]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [19]

    Van Uitert L G 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [20]

    Boutinaud P, Pinel E, Oubaha M, Mahiou R, Cavalli E, Bettinelli M 2006 Opt. Mater. 28 9Google Scholar

    [21]

    Struck C W, Fonger W H 1971 J. Appl. Phys. 42 4515Google Scholar

    [22]

    吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺 2017 66 117801Google Scholar

    Lü Z C, Li Y, Quan G Y, Zheng Q H, Zhou W W, Zhao W 2017 Acta Phys. Sin. 66 117801Google Scholar

    [23]

    唐红霞, 王昌文, 宋美霖, 王春红, 于长兴 2023 中国稀土学报 1

    Tang H X, Wang C W, Song M L, Wang C H, Yu C X 2023 J. Rare-Earths 1

    [24]

    缪菊红, 谢颖, 陈铭源, 李林珂, 韦松 2022 中国稀土学报 40 602

    Liao J H, Xie Y, Chen M Y, Li L K, Wei S 2022 J. Rare-Earths 40 602

    [25]

    夏克尔阿·热帕提, 王林香, 李晴, 柏云凤, 买买提·穆妮热 2023 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [26]

    贾朝阳, 杨雪, 王志刚, 柴瑞鹏, 庞庆, 张翔宇, 高当丽 2023 72 224210Google Scholar

    Jia C Y, Yang X, Wang Z G, Chai R P, Pang Q, Zhang X Y, Gao D L 2023 Acta Phys. Sin. 72 224210Google Scholar

  • [1] Wang Fang, Chen Ya-Ke, Li Chuan-Qiang, Ma Tao, Lu Ying-Hui, Liu Heng, Jin Chan. Porous silicon - calcium fluoride plasma waveguide with asymmetric Ag film and its sensitivity characteristics. Acta Physica Sinica, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [2] Wu Jian-Xiong, Cheng Teng, Zhang Qing-Chuan, Gao Jie, Wu Xiao-Ping. Optical detection sensitivity of area light source in optical read-out IR imaging. Acta Physica Sinica, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [3] Yu Yang, Liu Zi-Jun, Chen Qiao-Qiao, Dai Neng-Li, Li Jin-Yan, Yang Lü-Yun. The luminescence properties of the Dy3+-doped borosilicate glasses. Acta Physica Sinica, 2013, 62(1): 017804. doi: 10.7498/aps.62.017804
    [4] Qi Zhi-Jian, Huang Wei-Gang. Preparation and luminescent properties of Ca3Si3O9:Dy3+ phosphors for white LED. Acta Physica Sinica, 2013, 62(19): 197801. doi: 10.7498/aps.62.197801
    [5] Wang Rui, Wang Yu-Shan. Sensitivity of Delta-P1 approximation model to second-order parameter. Acta Physica Sinica, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [6] Tian Hui-Juan, Niu Ping-Juan. Sensitivity of spatially-resolved diffuse reflectance to optical parameters in the hybrid diffusion approximation. Acta Physica Sinica, 2012, 61(18): 184214. doi: 10.7498/aps.61.184214
    [7] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [8] Han Ying, Zhou Gui-Yao, Xia Chang-Ming, Hou Zhi-Yun, Hou Lan-Tian. Investigation on the fabrication and luminescence characteristics of Yb3+ and Al3+ Co-doped silicate glasses. Acta Physica Sinica, 2011, 60(5): 054212. doi: 10.7498/aps.60.054212
    [9] Miao Rui-Xia, Zhang Yu-Ming, Tang Xiao-Yan, Zhang Yi-Men. Investigation of luminescence properties of basal plane dislocations in 4H-SiC. Acta Physica Sinica, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [10] Li Pan-Lai, Wang Zhi-Jun, Yang Zhi-Ping, Guo Qing-Lin. Ba3Tb(BO3)3 ∶Ce3+ : a green emitting phosphor for white LED. Acta Physica Sinica, 2011, 60(4): 047804. doi: 10.7498/aps.60.047804
    [11] Cao Shi-Xiu, Han Tao, Tu Ming-Jing. The effect of Eu2+ doping concentration on luminescence properties of Ca2-xMgSi2O7∶x Eu2+ green phosphor. Acta Physica Sinica, 2011, 60(12): 127802. doi: 10.7498/aps.60.127802
    [12] Li Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying, Lin Qiang. All-optical high sensitive atomic magnetometer. Acta Physica Sinica, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [13] Wang Ze-Feng, Hu Yong-Ming, Meng Zhou, Luo Hong, Ni Ming. Frequency response of fourth-order acoustic low-pass filtering fiber-optic hydrophones. Acta Physica Sinica, 2009, 58(10): 7034-7043. doi: 10.7498/aps.58.7034
    [14] Wang Zhi-Jun, Li Pan-Lai, Wang Ying, Yang Zhi-Ping, Guo Qing-Lin. Luminescence characteristics of LiBaBO3:Eu2+ phosphor for white LED. Acta Physica Sinica, 2009, 58(2): 1257-1260. doi: 10.7498/aps.58.1257
    [15] Li Pan-Lai, Wang Zhi-Jun, Wang Ying, Yang Zhi-Ping, Guo Qing-Lin, Li Xu, Yang Yan-Min, Fu Guang-Sheng. Luminescence characteristics and crystallographic sites of Ce3+ in LiBaBO3. Acta Physica Sinica, 2009, 58(8): 5831-5835. doi: 10.7498/aps.58.5831
    [16] Ma Ming-Xing, Zhu Da-Chuan, Tu Ming-Jing. Effect of H3BO3 on composition and luminescence properties of BaAl2Si2O8:Eu2+ blue phosphor. Acta Physica Sinica, 2009, 58(9): 6512-6517. doi: 10.7498/aps.58.6512
    [17] Ma Ming-Xing, Zhu Da-Chuan, Tu Ming-Jing. The effect of Eu2+ doping concentration on luminescence properties of BaAl2Si2O8:Eu2+ blue phosphor. Acta Physica Sinica, 2009, 58(8): 5826-5830. doi: 10.7498/aps.58.5826
    [18] Wang Zhi-Jun, Li Pan-Lai, Wang Gang, Yang Zhi-Ping, Guo Qing-Lin. Preparation and luminescence characteristics of Ca2SiO4:Dy3+ phosphor. Acta Physica Sinica, 2008, 57(7): 4575-4579. doi: 10.7498/aps.57.4575
    [19] Li Cheng-Ren, Ming Cheng-Guo, Li Shu-Feng, Ding Jian-Hua, Wang Bao-Cheng, Zhang Li. Up-conversion mechanisms of Yb-Er co-doped Al2O3 film and its temperature characteristics. Acta Physica Sinica, 2008, 57(10): 6604-6608. doi: 10.7498/aps.57.6604
    [20] Liu Xiao-Bing, Shi Xiang-Hua, Liao Tai-Chang, Ren Peng, Liu Yue, Liu Yi, Xiong Zu-Hong, Ding Xun-Min, Hou Xiao-Yuan. The microstructure and characteristics of luminescent porous silicon film prepared by the physicochemical sonic-vacating method. Acta Physica Sinica, 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
Metrics
  • Abstract views:  1685
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2024
  • Accepted Date:  27 January 2024
  • Available Online:  08 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回
Baidu
map