-
利用射频溅射技术在平面单模玻璃波导表面局部淀积一层Ta2O5梯度薄膜, 形成复合光波导芯片, 结合棱镜耦合法制备了一种集成光偏振干涉传感器. 基于四层平板波导模型理论分析了复合光波导表面折射率灵敏度SRI与Ta2O5梯度薄膜等效厚度Teq的关系, 结合实验测定的SRI得出了本工作中所使用Ta2O5梯度薄膜的Teq 33.021 nm, 进一步得出芯片吸附层厚度灵敏度Sab (2.412 2) nm-1. 利用该复合波导偏振干涉仪结合Lorentz-Lorenz有效介质理论测得了市售食用白醋中醋酸的浓度, 并以市售牛栏山二锅头酒为例进行了白酒掺水和掺甲醇的测试, 结果表明, 白酒掺水或甲醇前后的折射率改变量与掺杂量成准线性变化关系; 原位实时监测了丁酰胆碱酯酶的动态吸附过程及细胞色素c/聚苯乙烯磺酸钠的分子自组装过程, 并利用测得的位相差变化结合芯片吸附层厚度灵敏度Sab 获得了蛋白质表面覆盖度.A tapered thin film of Ta2O5 is sputtered on a single-mode slab glass waveguide to form a composite optical waveguide (COWG) for serving as a prism-coupled integrated optical polarimetric interferometer. The relationship between the refractive-index sensitivity (SRI) of the interferometer and the equivalent thickness (Teq) for the tapered layer of Ta2O5 is theoretically analyzed based on a four-layer homogeneous waveguide model. A comparison of the measured SRI with the simulated data leads to Teq 33.021 nm for the COWG used. The sensitivity of the interferometer to thickness of the protein adlayer is determined to be Sab (2.412 2)/nm. The acetic-acid concentration of a commercial Chinese vinegar is investigated, for the first time, by use of the interferometer combined with the Lorentz-Lorenz effective-medium theory. Water and methanol adulterations of a commercial Chinese liquor are detected with the interferometer. The results indicate that the refractive-index change induced by the adulteration is a quasi-linear function of the adulteration amount. Both the dynamic adsorption process of butyrylcholinesterase and the self-assembly process of cytochrome c/PSS multilayer film are monitored in real time with the sensor. The protein surface coverage is obtained from the combination of the measured phase-difference change and the adlayer-thickness sensitivity.
-
Keywords:
- composite optical waveguide /
- polarimetric interferometry /
- high sensitivity /
- chemical biosensing
[1] Wu X F, Zhang J S, Li Z, Liu Y L, Gong Q H 2009 Chin. Phys. Lett. 26 057302
[2] Stamm Ch, Lukosz W 1996 Sens. Actuators B 31 203
[3] Klotz A, Brecht A, Gauglitz G 1997 Sens. Actuators B 38-39 310
[4] Schmitt K, Oehse K, Sulz G, Hoffmann C 2008 Sensor 8 711
[5] Qi Z M, Matsuda N, Takatsu, Kato K 2004 Langmuir 20 778
[6] Yimit A, Rossberg A G, Amemiya T, Itoh K 2005 Talanta 65 1102
[7] Ymeti A, Greve J, Lambeck P V, Wink T, Van Hövell S W F M, Beumer T A M, Wijn R R, Heideman R G, Subramaniam V, Kanger J S 2007 Nano. Lett. 7 394
[8] Zinoviev K, Dominguez C, Plaza J A, Busto V J C, Lechuga L M 2006 J. Lightwave Technol. 24 2132
[9] Irace A, Breglio G 2003 Opt. Express 11 2807
[10] Ricard-Blum S, Peel L L, Ruggiero F, Freeman N J 2006 Anal. Biochem. 352 252
[11] http: //www.owls-sensors.com/[2000-2011]
[12] Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 59 6532]
[13] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 60 064202]
[14] Qi Z M, Itoh K, Murabayashi M, Yanagi H 2000 J. Lightwave Technol. 18 1106
[15] Lu D F, Qi Z M 2010 Chin. Phys. Lett. 27 104206
[16] Lu D F, Qi Z M 2011 Sens. Actuators B 157 575
[17] De Feijter J A, Benjamins J, Veer F A 1978 Biopolymers 17 1759
[18] Aspnes D E 1982 Am. J. Phys. 50 704
[19] Granados K, Gracia-Fadrique J, Amigo A, Bravo R 2006 J. Chem. Eng. Data 51 1356
[20] Dzyadevych S V, Arkhypova V N, Martelet C, Jaffrezic-Renault N, Chovelon J M, El'skaya A V, Soldatkin A P 2004 Electroanalysis 16 1873
[21] Topoglidis E, Campbell C J, Cass A E G, Durrant J R 2001 Langmuir 17 7899
[22] Kosmulski M 1997 Langmuir 13 6315
-
[1] Wu X F, Zhang J S, Li Z, Liu Y L, Gong Q H 2009 Chin. Phys. Lett. 26 057302
[2] Stamm Ch, Lukosz W 1996 Sens. Actuators B 31 203
[3] Klotz A, Brecht A, Gauglitz G 1997 Sens. Actuators B 38-39 310
[4] Schmitt K, Oehse K, Sulz G, Hoffmann C 2008 Sensor 8 711
[5] Qi Z M, Matsuda N, Takatsu, Kato K 2004 Langmuir 20 778
[6] Yimit A, Rossberg A G, Amemiya T, Itoh K 2005 Talanta 65 1102
[7] Ymeti A, Greve J, Lambeck P V, Wink T, Van Hövell S W F M, Beumer T A M, Wijn R R, Heideman R G, Subramaniam V, Kanger J S 2007 Nano. Lett. 7 394
[8] Zinoviev K, Dominguez C, Plaza J A, Busto V J C, Lechuga L M 2006 J. Lightwave Technol. 24 2132
[9] Irace A, Breglio G 2003 Opt. Express 11 2807
[10] Ricard-Blum S, Peel L L, Ruggiero F, Freeman N J 2006 Anal. Biochem. 352 252
[11] http: //www.owls-sensors.com/[2000-2011]
[12] Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 59 6532]
[13] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 60 064202]
[14] Qi Z M, Itoh K, Murabayashi M, Yanagi H 2000 J. Lightwave Technol. 18 1106
[15] Lu D F, Qi Z M 2010 Chin. Phys. Lett. 27 104206
[16] Lu D F, Qi Z M 2011 Sens. Actuators B 157 575
[17] De Feijter J A, Benjamins J, Veer F A 1978 Biopolymers 17 1759
[18] Aspnes D E 1982 Am. J. Phys. 50 704
[19] Granados K, Gracia-Fadrique J, Amigo A, Bravo R 2006 J. Chem. Eng. Data 51 1356
[20] Dzyadevych S V, Arkhypova V N, Martelet C, Jaffrezic-Renault N, Chovelon J M, El'skaya A V, Soldatkin A P 2004 Electroanalysis 16 1873
[21] Topoglidis E, Campbell C J, Cass A E G, Durrant J R 2001 Langmuir 17 7899
[22] Kosmulski M 1997 Langmuir 13 6315
计量
- 文章访问数: 6823
- PDF下载量: 529
- 被引次数: 0