-
A novel fiber sensor based compound ring laser cavity with linear variation of frequency is proposed and demonstrated experimentally. The compound ring laser cavity is comprised of a ring cavity and a straight cavity. This system can generate the beat frequency spectrum by employing an erbium doped fiber amplifier, a fiber Bragg grating is used as a sensor head and the straight cavity reflector, a π phase shifted fiber Bragg grating serves as a microwave photonic passband filter. The principle of the proposed sensor is theoretically analyzed, showing that as the displacement increases the beat frequency decreases, and there exists a linear relationship between displacement change and beat frequency shift. In experiment, it is shown that the sensor has a high sensitivity of about 86.19 kHz/mm and can achieve a good linear response (R2 = 0.9973), and that the minimum monitored displacement is about 10 μm. The measurement results demonstrate that the sensor is accurate, sensitive, and the proposed sensor system has a compact and simple structure, which makes it convenient for more applications in future.
-
Keywords:
- fiber laser sensor /
- compound ring laser cavity /
- beat frequency /
- erbium doped fiber amplifier
[1] Liu Y, Qin Q, Liu H H, Tan Z W, Wang M G 2018 Opt. Fiber Technol. 46 48Google Scholar
[2] Xu Y L, Zhang X H, Zhu S Y, Zhan S 2016 Sci. Bull. 61 313Google Scholar
[3] Yang Chen, Oyadiji S O 2016 Sens. Actuator A-Phys. 244 1Google Scholar
[4] Yamaguchi T, Endo W, Shinoda Y 2019 IEEE Sens. J. 19 10519Google Scholar
[5] Tanaka Y, Furukawa O, Tsuchiya K 2018 Appl. Phys. Express 11 112501Google Scholar
[6] Guo T, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19Google Scholar
[7] Ahmad H, Aidit S N, Ooi S I, Tiu Z C 2018 IEEE Sens. J. 18 8275Google Scholar
[8] Kim H H, Choi S J, Jeon K S, Pan J K 2016 Sensors 16 1Google Scholar
[9] Kisala P, Harasim D, Mroczka J 2016 Opt. Express 24 29922Google Scholar
[10] Huang B S, Xiong S S, Chen Z S, Zhu S F, Zhang H, Huang X C, Feng Y H, Gao S C, Chen S, Liu W P, Li Z H 2019 IEEE Sens. J. 19 5632Google Scholar
[11] Liu Z G, Zhang X P, Gong Z F, Zhang Y, Peng W 2016 IEEE Photonics Technol. Lett. 28 1723Google Scholar
[12] Huang L, Liu S J, Liu R Z, Guo Y, Chen X F 2018 IEEE Photonics Technol. Lett. 30 1621Google Scholar
[13] Enriquez-Gomeze L E, Guerrero-Viramontes J A, Martinez-Rios A, Salceda-Delgadoe G, Toral-Acosta D, Porraz-Culebro T E, Selvas-Aguilar R, Madrazo-de-Rosa K, Anzueto-Sanchez G 2020 IEEE Photonics Technol. Lett. 32 93Google Scholar
[14] Nan Y G, Wang C, Peng G D, Guo T, Xie W P, Min L, Cai S S, Ni J S, Yi J, Luo X Y, Wang K, Nie M 2020 IEEE Trans. Instrum. Meas. 69 268Google Scholar
[15] Jaharudin N A N, Cholan N A, Omar M A, Talib R, Ngajikin N H 2020 Laser Phys. 30 015101Google Scholar
[16] Liao S L, Wong T 2019 IEEE Sens. J. 19 12016Google Scholar
[17] Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Opt. Fiber Technol. 51 71Google Scholar
[18] Liu G G, ZhuY P, Liu Z G, Han M 2019 Opt. Lett. 44 2756Google Scholar
[19] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 68 074204Google Scholar
Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar
[20] Guo Y, Liu S J, Ni Y, Wu H D, Chen, X F 2019 Opt. Express 27 11776Google Scholar
-
-
[1] Liu Y, Qin Q, Liu H H, Tan Z W, Wang M G 2018 Opt. Fiber Technol. 46 48Google Scholar
[2] Xu Y L, Zhang X H, Zhu S Y, Zhan S 2016 Sci. Bull. 61 313Google Scholar
[3] Yang Chen, Oyadiji S O 2016 Sens. Actuator A-Phys. 244 1Google Scholar
[4] Yamaguchi T, Endo W, Shinoda Y 2019 IEEE Sens. J. 19 10519Google Scholar
[5] Tanaka Y, Furukawa O, Tsuchiya K 2018 Appl. Phys. Express 11 112501Google Scholar
[6] Guo T, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19Google Scholar
[7] Ahmad H, Aidit S N, Ooi S I, Tiu Z C 2018 IEEE Sens. J. 18 8275Google Scholar
[8] Kim H H, Choi S J, Jeon K S, Pan J K 2016 Sensors 16 1Google Scholar
[9] Kisala P, Harasim D, Mroczka J 2016 Opt. Express 24 29922Google Scholar
[10] Huang B S, Xiong S S, Chen Z S, Zhu S F, Zhang H, Huang X C, Feng Y H, Gao S C, Chen S, Liu W P, Li Z H 2019 IEEE Sens. J. 19 5632Google Scholar
[11] Liu Z G, Zhang X P, Gong Z F, Zhang Y, Peng W 2016 IEEE Photonics Technol. Lett. 28 1723Google Scholar
[12] Huang L, Liu S J, Liu R Z, Guo Y, Chen X F 2018 IEEE Photonics Technol. Lett. 30 1621Google Scholar
[13] Enriquez-Gomeze L E, Guerrero-Viramontes J A, Martinez-Rios A, Salceda-Delgadoe G, Toral-Acosta D, Porraz-Culebro T E, Selvas-Aguilar R, Madrazo-de-Rosa K, Anzueto-Sanchez G 2020 IEEE Photonics Technol. Lett. 32 93Google Scholar
[14] Nan Y G, Wang C, Peng G D, Guo T, Xie W P, Min L, Cai S S, Ni J S, Yi J, Luo X Y, Wang K, Nie M 2020 IEEE Trans. Instrum. Meas. 69 268Google Scholar
[15] Jaharudin N A N, Cholan N A, Omar M A, Talib R, Ngajikin N H 2020 Laser Phys. 30 015101Google Scholar
[16] Liao S L, Wong T 2019 IEEE Sens. J. 19 12016Google Scholar
[17] Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Opt. Fiber Technol. 51 71Google Scholar
[18] Liu G G, ZhuY P, Liu Z G, Han M 2019 Opt. Lett. 44 2756Google Scholar
[19] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 68 074204Google Scholar
Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar
[20] Guo Y, Liu S J, Ni Y, Wu H D, Chen, X F 2019 Opt. Express 27 11776Google Scholar
Catalog
Metrics
- Abstract views: 6494
- PDF Downloads: 70
- Cited By: 0