搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流体模型的碳纳米管电离式传感器的结构优化方法

吴健 韩文 程珍珍 杨彬 孙利利 王迪 朱程鹏 张勇 耿明昕 景龑

引用本文:
Citation:

基于流体模型的碳纳米管电离式传感器的结构优化方法

吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑

Structure optimization of carbon nanotube ionization sensor based on fluid model

Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan
PDF
HTML
导出引用
  • 与常规电离式传感器相比, 碳纳米管三电极电离式气体传感器具有体积小、工作电压低的优势, 对智能电网、泛在物联网的发展具有重要作用, 但存在输出电流低、灵敏度低的缺点, 需要从结构上对其进行优化. 本文基于汤生放电原理, 采用COMSOL Multiphysics多物理场直接耦合分析软件, 建立了传感器二维等离子体放电流体仿真模型. 研究得到了8种不同结构的传感器, 在氮气背景中的静电场分布及传感器收集极平均电流密度. 通过对比不同结构参数下的电场强度及电流密度值, 得到了最优传感器结构. 结合仿真结果, 制备了8种优化结构的传感器进行实验验证, 最优传感器结构具有最高的收集电流密度, 与仿真结果一致, 证明了本文提出的结构优化方法的可行性. 基于最优结构, 制作了100和120 μm极间距的传感器, 获得了NO/SO2两组分混合气体的敏感特性. 与其他技术相比, 最优传感器的灵敏度比现有技术高1—2个数量级, 展示了三电极电离式碳纳米管传感器的应用潜力.
    Compared with the traditional ionization sensor, triple electrode ionization gas sensor based on carbon nanotubes features excellent performances of small size and low operation voltage, and plays an important role in developing smart grids and the ubiquitous Internet of Things. However, they exhibit the disadvantages of small collecting current and low sensitivity, and need to be optimized in structure. Based on the Townsend discharge mechanism and three governing equations of particle mass conservation, electron energy conservation and Poisson equations, a two-dimensional plasma discharge fluid simulation model of the sensor is established by using the COMSOL Multiphysics software. According to gas composition, component concentration, structure of the sensor and voltage applied to the electrodes, we determine the chemical reaction, reaction rate coefficient, field control equation, initial values and boundary conditions. In order to calculate the interior distribution of charged particles inside the boundary, the inter-electrode space region is meshed. Initial values of mesh are set, such as a dense mesh of nano-meter length around the electrode having micro-nano structure, and a rough mesh of micro-meter length in the other region of inter-electrode space. The initial values of time-step are set for each mesh grid, and the discharge model of each mesh grid is numerically solved by the finite volume method. The three linkage governing equations are discretized and calculated iteratively in time and space, and the mesh values and time-steps are adjusted to make the results converged. The electrostatic field distribution and the average collecting current density of the eight kinds of sensors are obtained in the background gas of nitrogen. The optimal sensor structure is obtained by comparing the electric field intensities and current densities under different structure parameters. The eight kinds of the sensors are prepared for experimentally verifying the optimization method. The optimal structure of the 7# sensor has the highest collecting current density in the eight kind structures, which is consistent with the simulation results, and proves the feasibility of the structure optimization method proposed in the paper. Based on the optimal structure, the sensors, respectively with the electrode spacings of 100 and 120 μm, are fabricated, and the response characteristics of NO/SO2 mixture gas are obtained. Compared with other technologies, the sensor with optimal structure exhibits 1-2 orders of sensitivity higher than the others. The optimized triple electrode ionization sensor based on carbon nanotubes exhibits many potential applications.
      通信作者: 张勇, zhyong@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51577142, 61422061807)、国家重点研发计划(批准号: 2017YFB0404102, 2017YFB1200902-09)和国家电网有限公司总部管理科技项目(批准号: 520900180008)资助的课题
      Corresponding author: Zhang Yong, zhyong@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51577142, 61422061807), the National Key R&D Program of China (Grant Nos. 2017YFB0404102, 2017YFB1200902-09), and the Headquarters Management Technology Project of the State Grid Corporation, China (Grant No. 520900180008)
    [1]

    Gomes J B A, Rodrigues J J P C, Rabelo R A L, Tanwar S, Al-Muhtadi J, Kozlov S 2020 Trans. Emerging Tel. Tech. 4 e3967

    [2]

    Vijayalakshmi J, Puthilibhai G, Siddarth S R L 2019 Proceedings of the Third International Conference on I-SMAC Palladam, India, December 1–4, 2019 p778

    [3]

    Mubin M H, Chaudhary K, Haider Z, Dabagh S, Ali J 2018 J. Comput. Theor. Nanosci. 15 1059Google Scholar

    [4]

    Sun D J, Luo Y F, Debliquy M, Zhang C 2018 Beilstein J. Nanotechnol. 9 2832Google Scholar

    [5]

    Zhang J, Jiang G P, Cumberland T, Xu P, Wu Y L, Delaat S, Yu A P, Chen Z W A 2019 InfoMat 1 234Google Scholar

    [6]

    Wu M L, Shin J M, Hong Y, Jang D, Jin X S, Kwon H I, Lee J H 2018 Sens. Actuators, B 259 1058Google Scholar

    [7]

    Sayago I, Terrado E, Lafuente E, Horrillo M C, Maser W K, Benito A M, Navarro R, Urriolabeitia E P, Martinez M T, Gutierrez J 2005 Synth. Met. 148 15Google Scholar

    [8]

    Li C L, Su Y, Lv X Y, Xia H L, Wang Y J 2010 Sens. Actuators, B 149 427Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Pan Z G, Zhang Y, Cheng Z Z, Liang B D, Zhang J Y, Li X, Wang X H, Liu D X, Yang A J, Rong M Z, Chen X W 2017 Sens. Actuators, B 245 183Google Scholar

    [11]

    Pan Z G, Zhang Y, Cheng Z Z, Tong J M, Chen Q Y, Zhang J P, Zhang J X, Li X 2017 Sensors 17 473Google Scholar

    [12]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li X, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [13]

    Govardhan K, Narmada K, Grace N 2013 Proceedings of 2013 COMSOL Conference Bangalore, India, October 23–25, 2013 p182099

    [14]

    Wilde J, Lai Y Q 2003 Microelectron. Reliab 43 345Google Scholar

    [15]

    Atieh R K 2012 M. S. Thesis (Seri Iskandar: University Teknologi Petronas)

    [16]

    Chivu N, Kahrizi M 2012 IEEE International Conference on Industrial Technology (ICIT) Athens, Greece, Match 19–21, 2013 p178

    [17]

    Abdel-Salam M, Anis H, El-Morshedy A, Radwan R 2000 High-Voltage Engineering: Theory and Practice (New York: Dekker) pp11–120

    [18]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [19]

    Brunet H, RoccaSerra J 1985 J. Appl. Phys. 57 1574Google Scholar

    [20]

    Guerra V, Sá P A, Loureiro J 2001 J. Phys. D.: Appl. Phys. 34 1745Google Scholar

    [21]

    Zhao G B, Hu X D, Argyle M D, Radosz M 2004 Ind. Eng. Chem. Res. 43 5077Google Scholar

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [23]

    Alphasense. NO-B1 Nitric Oxide Sensor NO Gas Sensor. https://www.isweek.com/Uploads/20160129/56ab1f1083efc.pdf

    [24]

    City. NX1 CiTiceL Nitric Oxide Sensor NO Gas Sensor. https://www.citytech.com.cn/PDF-Datasheets/nx1.pdf.

    [25]

    City Technology. 3SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/3sf.pdf.

    [26]

    City Technology. 5SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/5sf.pdf.

    [27]

    DD Scientific. GS+7SO2 Sulphur Dioxide Sensor (SO2). http://www.ddscientific.com/uploads/5/7/1/3/57136893/gs_7so2_datasheet.pdf.

  • 图 1  碳纳米管三电极传感器示意图

    Fig. 1.  Schematic diagram of the carbon nanotube triple electrode sensor.

    图 2  传感器测量电路示意图

    Fig. 2.  Schematic diagram of the measuring circuit.

    图 3  传感器仿真模型 (a) 传感器的二维模型示意图; (b) 传感器的静电场二维轴对称仿真场域模型

    Fig. 3.  Simulation model: (a) Longitudinal section diagram of the two-dimensional model; (b) two-dimensional axisymmetric field simulation model of the electrostatic field.

    图 4  模型添加的边界条件 (a) 阴极边界; (b) 引出极边界; (c) 收集极边界

    Fig. 4.  Boundary conditions: (a) The cathode; (b) extracting electrode; (c) collecting electrode.

    图 5  传感器极间一半场域模型网格剖分图 (a) 极间一半场域剖分; (b) 单根碳管周边局部场域剖分

    Fig. 5.  Grid mesh of sensor model in the half region of interelectrode: (a) Mesh in the half region of interelectrode; (b) mesh in the local region around carbon nanotube.

    图 6  传感器的纵向电场分布

    Fig. 6.  Longitudinal electric field distribution of the sensor.

    图 7  4种不同收集极结构的传感器电极示意图 (a) 1#传感器; (b) 2#传感器; (c) 3#传感器; (d) 4#传感器

    Fig. 7.  Schematic diagram of the electrodes with four different collecting structures: (a) 1# sensor; (b) 2# sensor; (c) 3# sensor; (d) 4# sensor.

    图 8  不同引出孔直径传感器静电场仿真 (a) 引出孔直径4 mm; (b) 引出孔直径3 mm; (c) 引出孔直径2 mm; (d) 引出孔直径1.2 mm; (e) 引出孔直径1 mm

    Fig. 8.  Electrostatic field simulation of the sensors with different outlet diameters of (a) 4 mm, (b) 3 mm, (c) 2 mm, (d) 1.2 mm, and (e) 1 mm.

    图 9  3种不同引出极结构的传感器电极示意图 (a) 1#传感器; (b) 5#传感器; (c) 6#传感器

    Fig. 9.  Schematic diagram of the electrodes with three different extracting electrode structures: (a) 1# sensor; (b) 5# sensor; (c) 6# sensor.

    图 10  3种不同阴极结构的传感器电极示意图 (a) 6#传感器; (b) 7#传感器; (c) 8#传感器

    Fig. 10.  Schematic diagram of the electrodes with three different cathode structures: (a) 6# sensor; (b) 7# sensor; (c) 8# sensor.

    图 11  仿真与实验电流密度对比

    Fig. 11.  Comparison of current densities obtained through simulation and experiment.

    图 12  氮气背景NO和SO2混合气体敏感特性曲线 (a) 不同SO2的体积分数(1 ppm = 10–6)下100 μm极间距NO传感器收集电流与NO的体积分数的关系曲线; (b) 不同NO的体积分数下120 μm极间距SO2传感器收集电流与SO2的体积分数的关系曲线

    Fig. 12.  Sensitivity characteristic curves of the sensor array for measuring NO and SO2 mixture in nitrogen: (a) Collecting currents of the NO sensor with the electrode spacing of 100 μm versus volume fraction of NO under different volume fractions of SO2; (b) collecting currents of the SO2 sensor with the electrode spacing of 120 μm versus volume fraction of SO2 under different volume fractions of NO.

    表 1  仿真建模参数

    Table 1.  Parameters of the simulation model.

    d/μmUe/VUc/V极板厚度/μm收集极槽参数引出极孔半径/mm阴极孔半径/mm碳纳米管参数
    数值10010014506 mm × 8 mm,
    200 μm深
    32长: 5 μm, 尖端半径:
    10 nm, 间距: 200 nm
    下载: 导出CSV

    表 2  网格剖分尺寸

    Table 2.  Mesh size of the model.

    整体区域阴极碳纳米管边界阴极非碳纳米管边界引出极、收集极边界
    最大单元尺寸/μm400.52030
    最小单元尺寸/μm100.0012030
    最大单元生长率1.251.25
    曲率解析度0.250.2
    狭窄区域解析度11
    下载: 导出CSV

    表 3  气体电离流体仿真模型的区域反应

    Table 3.  Regional reactions of the fluid simulation model on gas ionization.

    类型序号反应式反应率系数k/(m3·s–1)参考文献
    电子碰撞R1e + N2 → e + N2f(Te)[18]
    R2e + N2 → e + $ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $f(Te)[18]
    R3e + N2 → e + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $f(Te)[18]
    R4e + N2 → 2e +$ {\rm{N}}_{2}^{+} $f(Te)[18]
    R5e +$ {\rm{N}}_{4}^{+} $ → N2 + N24.73 × 10–11/(Te0.53)[18]
    R6e + N2 + $ {\rm{N}}_{2}^{+} $ → 2N23.12 × 10–35/Te1.5[18]
    R7e + e +$ {\rm{N}}_{2}^{+} $ → N21 × 10–31 × (Tg/Te)4.5[18]
    重粒子反应R8$ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + N2 +$ {\rm{N}}_{2}^{+} $5.0 × 10–17[19]
    R9$ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + N2 +$ {\rm{N}}_{2}^{+} $2.0 × 10–16[19]
    R10$ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + $ {\rm{N}}_{4}^{+} $5.0 × 10–17[20]
    R11$ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + $ {\rm{N}}_{4}^{+} $2.0 × 10–16[20]
    R12$ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $ + N2 → N2 + N23.0 × 10–22[19]
    R13$ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $+ N2 → N2 + N22.3 × 10–19[21]
    R14$ {\rm{N}}_{2}^{+} $ + N2 + N2 → $ {\rm{N}}_{4}^{+} $ + N21 × 10–41 × (300/Te)[18]
    R15$ {\rm{N}}_{4}^{+} $ + N2 → $ {\rm{N}}_{2}^{+} $ + N2 + N22.1 × 10–16exp(Tg/121)[18]
    下载: 导出CSV

    表 4  电极表面化学反应

    Table 4.  Chemical reactions on the electrode surface

    序号表面化学反应碳纳米管
    材料边界
    其他电
    极边界
    γeεr/eVγeεr/eV
    1${\rm{N} }_{2}\big({\rm{A} }^{3}\Sigma _{\rm{u} }^{+}\big)$ + 电极 → N20000
    2${\rm{N} }_{2}\big({\rm{a'} }^{1}\Sigma _{\rm{u} }^{-}\big)$ + 电极 → N20000
    3$ {\rm{N}}_{2}^{+} $ + 电极 → N20.2200
    4$ {\rm{N}}_{4}^{+} $+ 电极 → 2N20.2200
    下载: 导出CSV

    表 5  4种不同收集极结构的传感器的仿真放电参数

    Table 5.  Simulation discharge parameters of the four sensors with different collecting electrode structures.

    传感器
    型号
    电子浓
    度/m–3
    正离子
    浓度/m–3
    平均收集电流
    密度/(A·m–2)
    14.88 × 10119.30 × 10136.50 × 10-4
    23.32 × 10114.85 × 1013 4.09 × 10-4
    34.36 × 10116.10 × 10134.67 × 10-4
    44.61 × 10116.29 × 1013 4.96 × 10-4
    下载: 导出CSV

    表 6  3种不同引出极结构的传感器的仿真放电参数

    Table 6.  Simulation discharge parameters of the three sensors with different extracting electrode structures.

    传感器
    型号
    电子浓
    度/m–3
    正离子
    浓度/m–3
    平均收集电流
    密度/(A·m–2)
    14.88 × 10119.30 × 10136.50 × 10–4
    56.87 × 10111.12 × 10147.77 × 10–4
    62.15 × 10123.25 × 10149.99 × 10–4
    下载: 导出CSV

    表 7  3种不同阴极结构的传感器的仿真放电参数

    Table 7.  Simulation discharge parameters of the sensors with three different cathode structures.

    传感器
    型号
    电子浓
    度/m–3
    正离子浓
    度/m–3
    平均收集电流
    密度/(A·m–2)
    62.15 × 10123.25 × 10149.99 × 10–4
    72.28 × 10123.67 × 10141.00 × 10–3
    81.99 × 10123.09 × 10149.93 × 10–4
    下载: 导出CSV

    表 8  传感器阵列测量NO和SO2两组分混合气体的实验条件

    Table 8.  Experimental conditions of NO and SO2 mixtures detection with a sensor array.

    实验条件NO传感器SO2传感器
    极间距/μm100120
    阴极电压/V0
    引出极电压/V150
    收集极电压/V10
    NO体积分数0—1114 × 10–6
    SO2体积分数0—735 × 10–6
    下载: 导出CSV

    表 9  碳纳米管三电极传感器与现有NO, SO2传感器的性能对比

    Table 9.  Performance comparison of carbon nanotube based triple electrode sensors with the existing NO and SO2 sensors.

    传感器型号量程/10–6灵敏度SN/106
    三电极碳纳米管NO传感器0—1114–1.6 × 10–2
    三电极碳纳米管SO2传感器0—735–1.0 × 10–2
    NO-B1 NO传感器[23]0—2504.0 × 10–3
    NX1 CiTiceL NO传感器[24]0—50002.0 × 10–4
    3SF CiTiceL SO2传感器[25]0—20005.0 × 10–3
    5SF CiTiceL SO2传感器[26]0—20005.0 × 10–3
    GS+7SO2 SO2传感器[27]0—10001.0 × 10–3
    下载: 导出CSV
    Baidu
  • [1]

    Gomes J B A, Rodrigues J J P C, Rabelo R A L, Tanwar S, Al-Muhtadi J, Kozlov S 2020 Trans. Emerging Tel. Tech. 4 e3967

    [2]

    Vijayalakshmi J, Puthilibhai G, Siddarth S R L 2019 Proceedings of the Third International Conference on I-SMAC Palladam, India, December 1–4, 2019 p778

    [3]

    Mubin M H, Chaudhary K, Haider Z, Dabagh S, Ali J 2018 J. Comput. Theor. Nanosci. 15 1059Google Scholar

    [4]

    Sun D J, Luo Y F, Debliquy M, Zhang C 2018 Beilstein J. Nanotechnol. 9 2832Google Scholar

    [5]

    Zhang J, Jiang G P, Cumberland T, Xu P, Wu Y L, Delaat S, Yu A P, Chen Z W A 2019 InfoMat 1 234Google Scholar

    [6]

    Wu M L, Shin J M, Hong Y, Jang D, Jin X S, Kwon H I, Lee J H 2018 Sens. Actuators, B 259 1058Google Scholar

    [7]

    Sayago I, Terrado E, Lafuente E, Horrillo M C, Maser W K, Benito A M, Navarro R, Urriolabeitia E P, Martinez M T, Gutierrez J 2005 Synth. Met. 148 15Google Scholar

    [8]

    Li C L, Su Y, Lv X Y, Xia H L, Wang Y J 2010 Sens. Actuators, B 149 427Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Pan Z G, Zhang Y, Cheng Z Z, Liang B D, Zhang J Y, Li X, Wang X H, Liu D X, Yang A J, Rong M Z, Chen X W 2017 Sens. Actuators, B 245 183Google Scholar

    [11]

    Pan Z G, Zhang Y, Cheng Z Z, Tong J M, Chen Q Y, Zhang J P, Zhang J X, Li X 2017 Sensors 17 473Google Scholar

    [12]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li X, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [13]

    Govardhan K, Narmada K, Grace N 2013 Proceedings of 2013 COMSOL Conference Bangalore, India, October 23–25, 2013 p182099

    [14]

    Wilde J, Lai Y Q 2003 Microelectron. Reliab 43 345Google Scholar

    [15]

    Atieh R K 2012 M. S. Thesis (Seri Iskandar: University Teknologi Petronas)

    [16]

    Chivu N, Kahrizi M 2012 IEEE International Conference on Industrial Technology (ICIT) Athens, Greece, Match 19–21, 2013 p178

    [17]

    Abdel-Salam M, Anis H, El-Morshedy A, Radwan R 2000 High-Voltage Engineering: Theory and Practice (New York: Dekker) pp11–120

    [18]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [19]

    Brunet H, RoccaSerra J 1985 J. Appl. Phys. 57 1574Google Scholar

    [20]

    Guerra V, Sá P A, Loureiro J 2001 J. Phys. D.: Appl. Phys. 34 1745Google Scholar

    [21]

    Zhao G B, Hu X D, Argyle M D, Radosz M 2004 Ind. Eng. Chem. Res. 43 5077Google Scholar

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [23]

    Alphasense. NO-B1 Nitric Oxide Sensor NO Gas Sensor. https://www.isweek.com/Uploads/20160129/56ab1f1083efc.pdf

    [24]

    City. NX1 CiTiceL Nitric Oxide Sensor NO Gas Sensor. https://www.citytech.com.cn/PDF-Datasheets/nx1.pdf.

    [25]

    City Technology. 3SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/3sf.pdf.

    [26]

    City Technology. 5SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/5sf.pdf.

    [27]

    DD Scientific. GS+7SO2 Sulphur Dioxide Sensor (SO2). http://www.ddscientific.com/uploads/5/7/1/3/57136893/gs_7so2_datasheet.pdf.

  • [1] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真.  , 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [2] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究.  , 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [3] 陈子俊, 李慧芳, 谢圳明, 张勇航, 郑浩, 姜凯乐, 张博, 张家铭, 王怀谦. 稀土掺杂硼团簇$ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) 的几何及电子结构.  , 2024, 73(19): 193601. doi: 10.7498/aps.73.20240962
    [4] 吕行, 富容国, 常本康, 郭欣, 王芝. 透射式GaAs光电阴极性能提高以及结构优化.  , 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [5] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析.  , 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [6] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真.  , 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [7] 周子昕, 黄印博, 卢兴吉, 袁子豪, 曹振松. 2 μm波段再入射离轴积分腔输出光谱设计与实验.  , 2019, 68(12): 129201. doi: 10.7498/aps.68.20190061
    [8] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器.  , 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [9] 杨李, 宋玉蓉, 李因伟. 考虑边聚类与扩散特性的信息传播网络结构优化算法.  , 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [10] 邓海游, 贾亚, 张阳. 蛋白质结构预测.  , 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [11] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量.  , 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [12] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究.  , 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [13] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [14] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究.  , 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [15] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [16] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究.  , 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [17] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究.  , 2013, 62(19): 194209. doi: 10.7498/aps.62.194209
    [18] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究.  , 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [19] 刘廷禹, 张启仁, 庄松林. PbWO4晶体中铅空位相关的色心模型.  , 2005, 54(2): 863-867. doi: 10.7498/aps.54.863
    [20] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
计量
  • 文章访问数:  6738
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-11
  • 上网日期:  2021-04-21
  • 刊出日期:  2021-05-05

/

返回文章
返回
Baidu
map