-
利用淀积在玻璃衬底上的金银合金薄膜作为表面等离子体共振(SPR)芯片, 构建了Kretschmann结构的近红外波长检测型SPR传感器. 采用不同浓度的葡萄糖水溶液测试了金银合金薄膜SPR传感器的折射率灵敏度. 实验结果表明随着入射角从7.5°增大到 9.5°, SPR吸收峰的半高峰宽从292.8 nm 减小到 131.4 nm, 共振波长从 1215 nm蓝移到 767.7 nm, 折射率灵敏度从35648.3 nm/RIU 减小到 9363.6 nm/RIU.在相同的初始共振波长(λR)下获得的金银合金薄膜SPR折射率灵敏度高于纯金膜(纯金膜在λR=1215 nm下的折射率灵敏度为29793.9 nm/RIU). 利用1 μmol/L的牛血清蛋白(BSA)水溶液测试了传感器对蛋白质吸附的响应.结果表明, BSA分子吸附使得金银合金薄膜SPR吸收峰红移了12.1 nm而纯金膜SPR吸收峰仅红移了9.5 nm. 实验结果还表明, 在相同λR下, 金银合金薄膜SPR吸收峰的半高峰宽大于纯金膜的半高峰宽, 因此其光谱分辨率比纯金膜SPR传感器低.Au-Ag alloy films deposited on the glass substrates are used, for the first time, as a wavelength-interrogated near infrared surface plasmon resonance (SPR) sensor. The values of resonance wavelength (λR) of the sensor at different angles of incidence are determined by absorptiometry and its refractive-index (RI) sensitivity is investigated using aqueous glucose solutions as the standard RI samples. As the incident angle increases from 7.5° to 9.5°, the SPR absorption peak shifts from λR = 1215 nm to 767.7 nm, the full width at half magnitude (FWHM) of the peak reduces from 292.8 nm to 131.4 nm, and the RI sensitivity decreases from 35648.3 nm/RIU down to 9363.6 nm/RIU. At the same initial λR, the SPR sensor with the Au-Ag alloy film shows a higher sensitivity than that with the pure Au film (S = 29793.9 nm/RIU at λR=1215 nm with a pure Au film). Adsorption of bovine serum album molecules from the aqueous solution of 1 μmol/L protein results in a redshift of ΔλR = 12.1 nm with the Au-Ag alloy film and ΔλR=9.5 nm with the pure Au film. The experimental data also indicate that the FWHM of the SPR absorption peak with the Au-Ag alloy film is larger than that at the same λR with the pure Au film, leading to a lower spectral resolution than that of the latter.
-
Keywords:
- Au-Ag alloy film /
- SPR /
- wavelength interrogation /
- high sensitivity
[1] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3
[2] Boussaad S, Pean J, Tao N J 2000 Anal. Chem. 72 222
[3] Qi Z M, Xia S H, Wei M D, Matsuda H, Zhou H S 2007 Appl. Opt. 46 7963
[4] Mazumdar S D, Hartmann M, Kämpfer P, Keusgen M 2007 Biosens. Bioelectron. 22 2040
[5] Shankaran D R, Gobi K V, Miura N 2007 Sens. Actuators B 121 158
[6] Frischeisen J, Mayr C, Reinke N A, Nowy S, Brtting W 2008 Opt. Express 16 18426
[7] Tanaka H, Hanasaki M, Isojima T, Takeuchi H, Shiroya T, Kawaguchi H, Shiroya T, Kawaguchi H 2009 J. Colloid Interface Sci. 70 259
[8] Hodnik V, Anderluh G 2009 Sensors 9 1339
[9] Chen X, Pan M, Jiang K 2010 Microelectron. Eng. 87 790
[10] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2010 Chin. Phys. Soc. 59 6532
[11] Wu Y H, Hao P, Zhang P 2009 Chin. Phys. Soc. 58 1980
[12] Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 61 027803]
[13] Wu Y H, Hao P, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [吴一辉, 郝鹏, 张平2010 59 6532]
[14] Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪 昕, 杜丹丹, 裘祖荣, 张国雄 2007 56 7219]
[15] Ong B H, Yuan X, Tjin S C 2007 Fiber and Integrated Optics 26 229
[16] Zhai P, Guo J, Xiang J, Zhou F 2007 J. Phys. Chem. C 111 981
[17] Zhu G, Li H, Clavero C, Yang K, Lukaszew R A, Podolskiy V A, Noginov M A 2009 Proceeding of the International Quantum Electronics Conference Baltimore, Maryland, May 31, 2009 pIFC4
[18] Zhu J 2009 Nanoscale Res. Lett. 4 977
[19] Lee K S, EI-Sayed M A 2006 J. Phys. Chem. B 110 19220
[20] Hutter E, Fendler J H, Roy D 2001 J. Phys. Chem. B 105 11159
[21] Zhou L, Yu X F, Fu X F, Hao Z H, Li K Y 2008 Chin. Phys. Lett. 25 1776
[22] Http://www.reichertai.com/files/applications/1039637372.PDF[2012.7.18]
[23] Zhang Z, Qi Z M 2010 Chin. J. Anal. Chem. 38 1538
[24] Palik E D 1998 Handbook of Optical Constants of Solids (Vol.1) (San Diego: Academic)
-
[1] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3
[2] Boussaad S, Pean J, Tao N J 2000 Anal. Chem. 72 222
[3] Qi Z M, Xia S H, Wei M D, Matsuda H, Zhou H S 2007 Appl. Opt. 46 7963
[4] Mazumdar S D, Hartmann M, Kämpfer P, Keusgen M 2007 Biosens. Bioelectron. 22 2040
[5] Shankaran D R, Gobi K V, Miura N 2007 Sens. Actuators B 121 158
[6] Frischeisen J, Mayr C, Reinke N A, Nowy S, Brtting W 2008 Opt. Express 16 18426
[7] Tanaka H, Hanasaki M, Isojima T, Takeuchi H, Shiroya T, Kawaguchi H, Shiroya T, Kawaguchi H 2009 J. Colloid Interface Sci. 70 259
[8] Hodnik V, Anderluh G 2009 Sensors 9 1339
[9] Chen X, Pan M, Jiang K 2010 Microelectron. Eng. 87 790
[10] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2010 Chin. Phys. Soc. 59 6532
[11] Wu Y H, Hao P, Zhang P 2009 Chin. Phys. Soc. 58 1980
[12] Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 61 027803]
[13] Wu Y H, Hao P, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [吴一辉, 郝鹏, 张平2010 59 6532]
[14] Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪 昕, 杜丹丹, 裘祖荣, 张国雄 2007 56 7219]
[15] Ong B H, Yuan X, Tjin S C 2007 Fiber and Integrated Optics 26 229
[16] Zhai P, Guo J, Xiang J, Zhou F 2007 J. Phys. Chem. C 111 981
[17] Zhu G, Li H, Clavero C, Yang K, Lukaszew R A, Podolskiy V A, Noginov M A 2009 Proceeding of the International Quantum Electronics Conference Baltimore, Maryland, May 31, 2009 pIFC4
[18] Zhu J 2009 Nanoscale Res. Lett. 4 977
[19] Lee K S, EI-Sayed M A 2006 J. Phys. Chem. B 110 19220
[20] Hutter E, Fendler J H, Roy D 2001 J. Phys. Chem. B 105 11159
[21] Zhou L, Yu X F, Fu X F, Hao Z H, Li K Y 2008 Chin. Phys. Lett. 25 1776
[22] Http://www.reichertai.com/files/applications/1039637372.PDF[2012.7.18]
[23] Zhang Z, Qi Z M 2010 Chin. J. Anal. Chem. 38 1538
[24] Palik E D 1998 Handbook of Optical Constants of Solids (Vol.1) (San Diego: Academic)
计量
- 文章访问数: 7575
- PDF下载量: 1353
- 被引次数: 0