Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Circular dichroism of honeycomb-shaped elliptical hole absorber

Yu Peng Wang Bao-Qing Wu Xiao-Hu Wang Wen-Hao Xu Hong-Xing Wang Zhi-Ming

Citation:

Circular dichroism of honeycomb-shaped elliptical hole absorber

Yu Peng, Wang Bao-Qing, Wu Xiao-Hu, Wang Wen-Hao, Xu Hong-Xing, Wang Zhi-Ming
PDF
HTML
Get Citation
  • The circular dichroism of chiral structure has been widely used in analytical chemistry, industrial pharmacy, biological monitoring, etc. However, the light-matter interaction between natural chiral structures is extremely weak. Plasmonic nanostructures can significantly enhance light-matter interaction. During the fabrication of the visible-to-near-infrared chiral plasmonic metamaterial absorbers, there exists usually a trade-off between the absorption and the sample area, that is, the circular dichroism signal of the large-area structure is small. Besides, the preparation of chiral absorbers working in the visible and near-infrared region usually requires expensive etching or lithography equipment, such as reactive ion etching or electron beam lithography. Therefore, preparing cost-effective chiral absorbers with large circular dichroism is attractive for practical applications. In order to improve the circular dichroism of large-scale chiral absorbers, a honeycomb-shaped elliptical hole absorber is proposed in this paper, and its absorption, circular dichroism, and optical g-factor are studied. By reasonable design, the numerical calculation results show that the circular dichroism can reach about 0.8 under the excitation of chiral polarized light, and the corresponding optical g-factor can reach about 1.7 at 920 nm. Compared with the reported absorber, our chiral absorber has a maximum g-factor value. The giant circular dichroism originates from the symmetry breaking of the structure by tilting ellipse structures, and the tilt angle has a significant influence on circular dichroism. To further explain the absorption difference, the electric profile, surface current distribution, and absorption loss of the chiral absorption at resonant wavelength are analyzed. Finally, we point out that the structure can be prepared by existing technologies, such as nanosphere photolithography: first, a layer of polystyrene (PS) balls is formed by self-organization, which can control the period of the structure; then the size of the PS balls is reduced to a suitable size and spacing by the reactive ion etching; finally, a metallic layer is deposited by oblique angle evaporation. This work provides useful guidance for fabricating the large-scale chiral plasmonic absorbers.
      Corresponding author: Yu Peng, peng.yu@uestc.edu.cn ; Wang Zhi-Ming, zhmwang@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203400), the China Postdoctoral Science Foundation (Grant No. 2019M663467), and the Free Exploration Project of Science and Technology Department of Sichuan Province, China (Grant No. 20YYJC3609)
    [1]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Hogele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 7389

    [2]

    Hentschel M, Schäferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 5

    [3]

    Yu P, BesteiroL V, HuangY, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 3

    [4]

    Yu P, Besteiro L V, W Jiang, Huang Y, Wang Y, Govorov A O, Wang Z 2018 Opt. Express 26 16

    [5]

    Zou J, Yu P, Wang W, Tong X, Chang L, Wu C, Du W, Ji H, Huang Y, Niu X, Govorov A O, Wu J, Wang Z 2019 J. Phys. D: Appl. Phys. 53 105106

    [6]

    Li W, Coppens J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar

    [7]

    Kong X T, Khorashad K, Wang Z, Govorov A O 2018 Nano Lett. 18 3

    [8]

    Liu T, Besteiro V, Liedl T, Correa-Duarte M A, Wang Z, Govorov A O 2019 Nano Lett. 19 2

    [9]

    Wang W, Besteiro L V, Liu T, Wu C, Sun J, Yu P, Chang L, Wang Z, Govorov A O 2019 ACS Photonics 6 12Google Scholar

    [10]

    Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C, Kotov N A 2013 J. Am. Chem. Soc. 135 49

    [11]

    Ouyang L, Rosenmann D, Czaplewski D A, Gao J, Yang X 2020 Nanotechnology 31 29

    [12]

    He G, Shang X, Yue J, Zhai X, Xia S, Li H, Wang L 2020 J. Opt. Soc. Am. B 37 4Google Scholar

    [13]

    Khorashad K L, Besteiro L V, Correa-Duarte M A, Burger S, Wang Z M, Govorov A O 2020 J. Am. Chem. Soc. 142 9

    [14]

    Frank B, Yin X, Schäferling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 ACS Nano 7 7

    [15]

    Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 OP321Google Scholar

    [16]

    Decker M, Ruther M, Kriegler C E, Zhou J, Soukoulis C M, Linden S, Wegener M 2009 Opt. Lett. 34 16Google Scholar

    [17]

    陈珊珊, 刘幸, 刘之光, 李家方 2019 68 248101Google Scholar

    Chen S S, Liu X, Liu Z G, Li J F 2019 Acta Phys. Sin. 68 248101Google Scholar

    [18]

    Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305Google Scholar

    [19]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 11Google Scholar

    [20]

    Petronijević E, Leahu G, Voti R L, Belardini A, Scian C, Michieli N, Cesca T, Matte G, Sibilia C 2019 Appl. Phys. Lett. 114 053101Google Scholar

    [21]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [22]

    Tang B, Li Z, Palacios E, Liu Z, Butun S, Aydin K 2017 IEEE Photonics Technology Letters 29 3Google Scholar

    [23]

    Ouyang L, Wang W, Rosenmann D, Czaplewski D A, Gao J, Yang X 2018 Opt. Express 26 24

    [24]

    Xiao W, Shi X, Zhang Y, Peng W, Zeng Y 2019 Phys. Scr. 94 8

    [25]

    Rongkuo Z, Thomas K, Costas S 2010 Opt. Express 18 14

  • 图 1  手性等离激元吸收器的结构示意图 (a) 三维立体结构图; (b) x-y平面图; (c) x-z平面图

    Figure 1.  Schematic of the proposed chiral plasmonic absorber: (a) Three dimensional schematic of the absorber; (b) schematic of the absorber in x-y plane; (c) schematic of the absorber in x-z plane.

    图 2  椭圆孔洞长轴a变化时的吸收谱, CD谱和g-factor (a), (b) 吸收谱; (c) CD谱; (d) g-factor

    Figure 2.  Simulated absorption spectra, CD spectra and g-factor with the long axis of the ellipse a changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor

    图 3  椭圆孔洞短轴b变化时的吸收谱、CD谱和g-factor (a), (b) 吸收谱; (c) CD谱; (d) g-factor

    Figure 3.  Simulated absorption spectra, CD spectra and g-factor with the short axis of the ellipse b changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 4  椭圆倾斜角θ变化时的 (a) (b) 吸收谱, (c) CD谱, (d) g-factor

    Figure 4.  Simulated absorption spectra, CD spectra and g-factor with the angle of the ellipse θ changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 5  顶层结构厚度h1变化时的 (a), (b) 吸收谱, (c) CD谱, (d) g-factor

    Figure 5.  Simulated absorption spectra, CD spectra and g-factor with the thickness of the top layer h1 changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 6  电介质SiO2层厚度h2变化时的 (a), (b) 吸收谱, (c) CD谱, (d) g-factor

    Figure 6.  Simulated absorption spectra, CD spectra, and g-factor with the thickness of the SiO2 layer h2 changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 7  不同偏振的入射光照射下, 共振波长在920 nm附近的 (a)和 (b) 归一化电场E/E0分布图, 未归一化前, LCP和RCP光照射下E/E0最大值分别为11和36; (c) 和 (d) 表面电流分布图; (e) 和 (f) 吸收损耗(吸收密度)图. 图(a), (c)和 (e) 为LCP入射; 图(b), (d) 和 (f) 为RCP入射

    Figure 7.  (a), (b) Normalized electric field E/E0; (c), (d) Surface current distribution; (e), (f) Absorption loss (absorption density) at the wavelength of 920 nm with different circularly polarized illuminations. (a), (c) and (e) For LCP; (b), (d) and (f) for RCP; the non-normalized maximum values of E/E0 under LCP and RCP light irradiation are 11 and 36, respectively.

    图 8  LCP和RCP光入射结构时反射波中两种圆偏振光的分量

    Figure 8.  The components of LCP and RCP light in the reflected wave.

    表 1  可见和近红外波段的手性超材料吸收器与本文吸收器的对比

    Table 1.  Selected publications on chiral metamaterial absorbers at the visible and near-infrared region.

    手性结构工作波长 /nmCDmax (ABS)g-factormax理论(T)或者实验(E)文献
    锯齿形8300.821.46T[9]
    L-形8150.120.48T[7]
    ŋ-形7910.450.90T&E[22]
    Z-形13400.851.56T&E[6]
    双矩形16000.71.34T&E[23]
    Y-形15500.751.26T[24]
    蜂窝孔洞9360.791.70T本文
    DownLoad: CSV
    Baidu
  • [1]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Hogele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 7389

    [2]

    Hentschel M, Schäferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 5

    [3]

    Yu P, BesteiroL V, HuangY, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 3

    [4]

    Yu P, Besteiro L V, W Jiang, Huang Y, Wang Y, Govorov A O, Wang Z 2018 Opt. Express 26 16

    [5]

    Zou J, Yu P, Wang W, Tong X, Chang L, Wu C, Du W, Ji H, Huang Y, Niu X, Govorov A O, Wu J, Wang Z 2019 J. Phys. D: Appl. Phys. 53 105106

    [6]

    Li W, Coppens J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar

    [7]

    Kong X T, Khorashad K, Wang Z, Govorov A O 2018 Nano Lett. 18 3

    [8]

    Liu T, Besteiro V, Liedl T, Correa-Duarte M A, Wang Z, Govorov A O 2019 Nano Lett. 19 2

    [9]

    Wang W, Besteiro L V, Liu T, Wu C, Sun J, Yu P, Chang L, Wang Z, Govorov A O 2019 ACS Photonics 6 12Google Scholar

    [10]

    Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C, Kotov N A 2013 J. Am. Chem. Soc. 135 49

    [11]

    Ouyang L, Rosenmann D, Czaplewski D A, Gao J, Yang X 2020 Nanotechnology 31 29

    [12]

    He G, Shang X, Yue J, Zhai X, Xia S, Li H, Wang L 2020 J. Opt. Soc. Am. B 37 4Google Scholar

    [13]

    Khorashad K L, Besteiro L V, Correa-Duarte M A, Burger S, Wang Z M, Govorov A O 2020 J. Am. Chem. Soc. 142 9

    [14]

    Frank B, Yin X, Schäferling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 ACS Nano 7 7

    [15]

    Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 OP321Google Scholar

    [16]

    Decker M, Ruther M, Kriegler C E, Zhou J, Soukoulis C M, Linden S, Wegener M 2009 Opt. Lett. 34 16Google Scholar

    [17]

    陈珊珊, 刘幸, 刘之光, 李家方 2019 68 248101Google Scholar

    Chen S S, Liu X, Liu Z G, Li J F 2019 Acta Phys. Sin. 68 248101Google Scholar

    [18]

    Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305Google Scholar

    [19]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 11Google Scholar

    [20]

    Petronijević E, Leahu G, Voti R L, Belardini A, Scian C, Michieli N, Cesca T, Matte G, Sibilia C 2019 Appl. Phys. Lett. 114 053101Google Scholar

    [21]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [22]

    Tang B, Li Z, Palacios E, Liu Z, Butun S, Aydin K 2017 IEEE Photonics Technology Letters 29 3Google Scholar

    [23]

    Ouyang L, Wang W, Rosenmann D, Czaplewski D A, Gao J, Yang X 2018 Opt. Express 26 24

    [24]

    Xiao W, Shi X, Zhang Y, Peng W, Zeng Y 2019 Phys. Scr. 94 8

    [25]

    Rongkuo Z, Thomas K, Costas S 2010 Opt. Express 18 14

  • [1] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [4] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [5] Wu Rou-Lan, Li Jiu-Sheng. Terahertz metasurface absorbed by both linearly and circularly polarized waves. Acta Physica Sinica, 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [6] Shi Shu-Shu, Xiao Shan, Xu Xiu-Lai. Chiral optical transport of quantum dots with different diamagnetic behaviors in a waveguide. Acta Physica Sinica, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [7] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [8] Tudahong Aba, Qu Yu, Bai Jun-Ran, Zhang Zhong-Yue. Studies of circular dichroism of planar composite metal nanostructure arrays. Acta Physica Sinica, 2020, 69(10): 107802. doi: 10.7498/aps.69.20200130
    [9] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [10] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [11] Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu. Some recent advances on quantum plasmonics. Acta Physica Sinica, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [12] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [13] Wu Reng-Lai, Xiao Shi-Fa, Xue Hong-Jie, Quan Jun. Quantization of plasmon in two-dimensional square quantum dot system. Acta Physica Sinica, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [14] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [15] Wang Wei-Dong, Li Long-Long, Yang Chen-Guang, Li Ming-Lin. Molecular dynamics study on relaxation properties of monolayer MoS2 nanoribbons. Acta Physica Sinica, 2016, 65(16): 160201. doi: 10.7498/aps.65.160201
    [16] Zeng Ting-Ting, Li Peng-Cheng, Zhou Xiao-Xin. Single isolated attosecond pulse generated by helium atom exposed to the two laser pulses with the same color and midinfrared intense laser pulse in the plasmon. Acta Physica Sinica, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [17] Yin Hai-Feng, Zhang Hong, Yue Li. Plasmon excitation in C60 fullerene dimers. Acta Physica Sinica, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [18] Tan Zi, Wang Lu-Xia. Plasmon effects on linear spectra related to heterogeneous electron transfer. Acta Physica Sinica, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [19] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun. Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [20] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
Metrics
  • Abstract views:  7829
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2020
  • Accepted Date:  30 June 2020
  • Available Online:  14 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回
Baidu
map