搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面复合金属微纳结构的圆二色性研究

吐达洪·阿巴 屈瑜 白俊冉 张中月

引用本文:
Citation:

平面复合金属微纳结构的圆二色性研究

吐达洪·阿巴, 屈瑜, 白俊冉, 张中月

Studies of circular dichroism of planar composite metal nanostructure arrays

Tudahong Aba, Qu Yu, Bai Jun-Ran, Zhang Zhong-Yue
PDF
HTML
导出引用
  • 圆二色性效应在圆偏振器、光调制器及光电器件等方面具有广泛的应用. 为提高平面金属微纳结构的圆二色性, 本文设计了由无限长纳米线和G形微纳结构组成的平面复合金属微纳结构, 并应用有限元方法研究了该阵列微纳结构的圆二色性特性. 数值计算结果显示, 在圆偏振光的激发下, G形微纳结构和平面复合金属微纳结构均出现了电偶极子、电四极子和电八极子等共振模式. 当G形微纳结构与无限长纳米线连接时, 各共振波长均发生红移, 并且无限长纳米线增加了不同圆偏振光激发下的局域表面等离激元共振强度, 从而使得平面复合微纳结构的圆二色性信号明显增强. 此外, 还研究了平面复合微纳结构阵列的几何参数对其圆二色性特性的影响. 这些结果为提高平面手性微纳结构的圆二色性信号强度提供一定的指导思路和方法.
    Circular dichroism effects have been widely used in circular polarizers, optical modulators and optoelectronic devices. Periodically arranged artificial metal chiral nanostructures has a strong electromagnetic coupling effect with light, which can greatly increase the interaction between the light and matter. Three-dimensional helix and helix-like chiral nanostructures show a larger circular dichroism effect due to the strong interactions between electric and magnetic resonance. The double-layer structures also can produce large circular dichroism, which signals also results from electric dipoles with different orientations between the two layers. Although the three dimensional plasmonic structures have shown large circular dichroism signals, however, three dimensional devices hold disadvantages in wide practical applications because of their complicated fabricating process, especially at micro- and nanoscales. Recent years, circular dichroism signals of planar nanostructures have been studied owing to their easy fabrication and wide potential applications. The resonance mode of planar metal nanostructures is sensitive to the shape, geometry, materials and surrounding environment of nanostructures, which provides a feasible technical approach for adjusting the circular dichroism signal of planar metal nanostructures. In this article, larger circular dichroism signals are realized through planar composite golden nanostructures, which composed of infinite long nanowire and G-shaped nanostructure. The absorption spectra, surface charge distributions at resonance wavelength of planar composite golden nanostructure are calculated by finite element method. For comparison, a circular dichroism signal with only G-shaped nanostructures is also studied. The numerical results show that under the illumination of right-handed polarized and left-handed polarized light, the planar composite golden nanostructure and G-shaped nanostructure exhibit electric dipole, quadrupolar, octupolar resonance modes, respectively. When the G-shaped nanostructure is connected to an infinitely long nanowire, all resonance peaks have a red shift and infinitely long nanowire increases the local surface resonance intensity under different circularly polarized light excitation. Therefore, it significantly enhances the circular dichroism signal of the planar composite golden nanostructure. At the same time, the influence of geometric parameters such as the different length of each nanorod of the G-shaped nanostructure and the thickness of the infinitely length nanowire on the circular dichroism modes are also studied. The findings may provide some guideline and methods for improving the circular dichroism signal of planar chiral nanostructure.
      通信作者: 张中月, zyzhang@snnu.edu.cn
    • 基金项目: 国家级-国家自然科学基金项目(61575117)
      Corresponding author: Zhang Zhong-Yue, zyzhang@snnu.edu.cn
    [1]

    Zheng Z G, Li Y, Bisoyi H K, Wang L, Bunning T J, Li Q 2016 Nature 531 352Google Scholar

    [2]

    Karimi E, Schulz S A, De L I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 167Google Scholar

    [3]

    杨傅子 2014 64 124214Google Scholar

    Yang F Z 2014 Acta Phys. Sin. 64 124214Google Scholar

    [4]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, SaileV, Wegener M 2009 Science 325 5947Google Scholar

    [5]

    Khanikaev A B, Arju N, Fan Z, Purtseladze D, Lu F, Lee J, Sarriugarte P, Schnell M, Hillenbrand R, Belkin M A, Shvets G 2016 Nat. Commun. 7 12045Google Scholar

    [6]

    Sun M, Zhang Z, Wang P, Li Q, Ma F, X Hong 2013 Light-Sci. Appl. 2 e112Google Scholar

    [7]

    李杰, 杨方清, 董建峰 2011 60 124214Google Scholar

    Li J, Yang F Q, Dong J F 2011 Acta Phys. Sin. 60 124214Google Scholar

    [8]

    Pendry J B 2004 Science 306 1353Google Scholar

    [9]

    苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102Google Scholar

    Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102Google Scholar

    [10]

    Maoz B M, Weegen R, Fan Z, Govorov A O, Ellestad G, Berova N, G Markovich 2012 J. Am. Chem. Soc. 134 17807Google Scholar

    [11]

    Zhu F, Li X, Li Y, Yan M, Liu S 2014 Anal. Chem. 87 357Google Scholar

    [12]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kadodwala M 2010 Nat. Nanotechnol. 5 783Google Scholar

    [13]

    Mochida Y, Cabral H, Miura Y, Albertini F, Fukushima S, Osada K, Kataoka K 2014 ACS Nano 8 6724Google Scholar

    [14]

    Narushima T, Okamoto H 2013 J. Phys. Chem. 117 23964Google Scholar

    [15]

    Narushima T, Hashiyada S, Okamoto H 2014 ACS Photonics 1 732Google Scholar

    [16]

    Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 321Google Scholar

    [17]

    Yin X H, Schaferling M, Metzger B, Giessen H 2013 Nano Lett. 13 6238Google Scholar

    [18]

    Larsen G K, Zhao Y P 2014 Appl. Phys. Lett. 105 071109Google Scholar

    [19]

    Gansel J K, Latzel M, Frolich A, Kaschke J, Thiel M, Wegener M 2015 Appl. Phys. Lett. 100 101109iGoogle Scholar

    [20]

    Decker M, Zhao R, Soukoulis C M, Linden S, Wegener M 2010 Opt. Lett. 35 1593Google Scholar

    [21]

    Liu N, Liu H, Zhu S, Giessen, Harald 2009 Nat. Photonics 3 157Google Scholar

    [22]

    Jing Z, Bai Y, Wang T, Ullah H, Li Y, Zhang Z Y 2019 J. Opt. Soc. Am. B 36 2721Google Scholar

    [23]

    Hwang Y, Lee Se, Kim S, Lin J, Yuan X C 2018 ACS Photonics 5 4538Google Scholar

    [24]

    Valev V K, Smisdom N, Silhanek A V, Clercq B D, Gillijins W, Ameloot M, Moshchalkov V T 2009 Nano Lett. 9 3945Google Scholar

    [25]

    Hendry E, Carpy T, Johnston J 2010 Nature Nanotechnology 5 783

    [26]

    Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900Google Scholar

    [27]

    Knipper R, Mayerhofer T G, Kopecky V, Huebner J U, Popp J 2018 ACS Photonics 5 1176Google Scholar

    [28]

    Yannopapas V 2009 Opt. Lett. 32 632Google Scholar

    [29]

    Feng C, Wang Z B, Lee S, Jiao J, Li L 2012 Opt. Commun. 2 245Google Scholar

    [30]

    Yan C, Martin O J F 2014 ACS Nano 8 11860Google Scholar

    [31]

    Tian X, Fang Y, Sun M 2015 Sci. Rep. 5 17534Google Scholar

  • 图 1  PCMN阵列的结构示意图 (a)三维立体结构示意图; (b)在xy平面的单元结构示意图

    Fig. 1.  Schematic of the proposed PCMN arrays: (a) Three dimensional schematic of PCMN; (b) unit schematic of PCMN in xy plane

    图 2  PCMN和GNS阵列的吸收光谱以及CD光谱 (a), (c) PCMN和GNS阵列的A+, A光谱; (b), (d)PCMN阵列和GNS阵列的CD光谱; 其中插图分别表示PCMN和GNS在xy平面的结构示意图

    Fig. 2.  Absorption and CD spectra of PCMN and GNS arrays: (a), (c) Simulated A, A+ spectra; (b), (d) CD spectra of PCMN and GNS arrays. The insert figures indicate the structure schematic of PCMN and GNS in x-y plane, respectively.

    图 3  不同偏振的入射光照射在PCMN和GNS时, 在共振波长处的表面电荷密度分布; 图(a), (b), (c), (d), (i), (j), (k)和(l)是为左旋偏振光; 图(e), (f), (g), (h), (m), (n), (o)和(p)是为右旋偏振光

    Fig. 3.  Surface charge density distribution of proposed PCMN and GNS at the resonant wavelength with different circularly polarized illuminations: (a), (b), (c), (d), (i), (j), (k) and (l) for LCP light; (e), (f), (g), (h), (m), (n), (o) and (p) for RCP light.

    图 4  PCMN阵列不同参数的CD光谱. 不同长度的(a) l1, (b) l2, (c) l3, (d) l4, (e) l5纳米棒和(f)不同无限长纳米线宽度w1的PCMN阵列的CD光谱

    Fig. 4.  CD spectra of PCMN arrays with different parameter; CD spectraof PCMN arrays with (a) different l1 (b) different l2, (c) different l3, (d) different l4, (e) different l5 nanorod and (f) different w1 of the infinite long nanowire.

    图 5  断开的PCMN阵列的吸收光谱和CD光谱 (a)吸收光谱; (b) CD光谱. 插图表示分别在共振波长处的电荷分布(深红-蓝色)和断开的PCMN在xy平面上的结构示意图(黄色)

    Fig. 5.  Absorption and CD spectra of the separated PCMN arrays: (a) Absorption spectrum; (b) CD spectrum; The insert figures indicate the charge distribution at resonance wavelength (crimson and blue), and structure schematic (yellow) of separated PCMN in xy plane.

    Baidu
  • [1]

    Zheng Z G, Li Y, Bisoyi H K, Wang L, Bunning T J, Li Q 2016 Nature 531 352Google Scholar

    [2]

    Karimi E, Schulz S A, De L I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 167Google Scholar

    [3]

    杨傅子 2014 64 124214Google Scholar

    Yang F Z 2014 Acta Phys. Sin. 64 124214Google Scholar

    [4]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, SaileV, Wegener M 2009 Science 325 5947Google Scholar

    [5]

    Khanikaev A B, Arju N, Fan Z, Purtseladze D, Lu F, Lee J, Sarriugarte P, Schnell M, Hillenbrand R, Belkin M A, Shvets G 2016 Nat. Commun. 7 12045Google Scholar

    [6]

    Sun M, Zhang Z, Wang P, Li Q, Ma F, X Hong 2013 Light-Sci. Appl. 2 e112Google Scholar

    [7]

    李杰, 杨方清, 董建峰 2011 60 124214Google Scholar

    Li J, Yang F Q, Dong J F 2011 Acta Phys. Sin. 60 124214Google Scholar

    [8]

    Pendry J B 2004 Science 306 1353Google Scholar

    [9]

    苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102Google Scholar

    Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102Google Scholar

    [10]

    Maoz B M, Weegen R, Fan Z, Govorov A O, Ellestad G, Berova N, G Markovich 2012 J. Am. Chem. Soc. 134 17807Google Scholar

    [11]

    Zhu F, Li X, Li Y, Yan M, Liu S 2014 Anal. Chem. 87 357Google Scholar

    [12]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kadodwala M 2010 Nat. Nanotechnol. 5 783Google Scholar

    [13]

    Mochida Y, Cabral H, Miura Y, Albertini F, Fukushima S, Osada K, Kataoka K 2014 ACS Nano 8 6724Google Scholar

    [14]

    Narushima T, Okamoto H 2013 J. Phys. Chem. 117 23964Google Scholar

    [15]

    Narushima T, Hashiyada S, Okamoto H 2014 ACS Photonics 1 732Google Scholar

    [16]

    Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 321Google Scholar

    [17]

    Yin X H, Schaferling M, Metzger B, Giessen H 2013 Nano Lett. 13 6238Google Scholar

    [18]

    Larsen G K, Zhao Y P 2014 Appl. Phys. Lett. 105 071109Google Scholar

    [19]

    Gansel J K, Latzel M, Frolich A, Kaschke J, Thiel M, Wegener M 2015 Appl. Phys. Lett. 100 101109iGoogle Scholar

    [20]

    Decker M, Zhao R, Soukoulis C M, Linden S, Wegener M 2010 Opt. Lett. 35 1593Google Scholar

    [21]

    Liu N, Liu H, Zhu S, Giessen, Harald 2009 Nat. Photonics 3 157Google Scholar

    [22]

    Jing Z, Bai Y, Wang T, Ullah H, Li Y, Zhang Z Y 2019 J. Opt. Soc. Am. B 36 2721Google Scholar

    [23]

    Hwang Y, Lee Se, Kim S, Lin J, Yuan X C 2018 ACS Photonics 5 4538Google Scholar

    [24]

    Valev V K, Smisdom N, Silhanek A V, Clercq B D, Gillijins W, Ameloot M, Moshchalkov V T 2009 Nano Lett. 9 3945Google Scholar

    [25]

    Hendry E, Carpy T, Johnston J 2010 Nature Nanotechnology 5 783

    [26]

    Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900Google Scholar

    [27]

    Knipper R, Mayerhofer T G, Kopecky V, Huebner J U, Popp J 2018 ACS Photonics 5 1176Google Scholar

    [28]

    Yannopapas V 2009 Opt. Lett. 32 632Google Scholar

    [29]

    Feng C, Wang Z B, Lee S, Jiao J, Li L 2012 Opt. Commun. 2 245Google Scholar

    [30]

    Yan C, Martin O J F 2014 ACS Nano 8 11860Google Scholar

    [31]

    Tian X, Fang Y, Sun M 2015 Sci. Rep. 5 17534Google Scholar

  • [1] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面.  , 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [2] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] 陶思岑, 陈焕阳. 完美吸收体、电磁“黑洞”以及内置完美匹配层的吸收特性.  , 2020, 69(15): 154201. doi: 10.7498/aps.69.20200110
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用.  , 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究.  , 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [8] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制.  , 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控.  , 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [11] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [12] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [13] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收.  , 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [14] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展.  , 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [15] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦.  , 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [16] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究.  , 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [17] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦.  , 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [18] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究.  , 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [19] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究.  , 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [20] 肖万能, 赵 霁, 王维江, 李润华, 周建英. 周期多层量子阱结构的光吸收特性与电场分布.  , 2003, 52(9): 2293-2297. doi: 10.7498/aps.52.2293
计量
  • 文章访问数:  8067
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-18
  • 修回日期:  2020-03-17
  • 刊出日期:  2020-05-20

/

返回文章
返回
Baidu
map